Genetic engineering for degradation of TCP in groundwater
A genetically modified organism is constructed by Ghufrana Samin for the degradation of a toxic compound and applied successfully in a lab-scale bioreactor to remove 1,2,3-trichlororpropane (TCP)-contaminated groundwater.
TCP is a toxic compound that has caused serious groundwater pollution at chemical waste disposal sites. The availability of a bacterium that can degrade this compound would allow the development of bioreactors for TCP removal from contaminated groundwater.
TCP-degrading strain
A possible degradation pathway would start with hydrolytic dehalogenation of TCP to 2,3-dichloro-1-propanol (DCP), followed by further oxidative metabolism. In the first part of her study, Samin isolated a strain of Pseudomonas putida from contaminated soil on basis of its capacity to utilize DCP as growth substrate. To transform TCP into DCP, she expressed an engineered haloalkane dehalogenase (DhaA31) constitutively under control of the dhlA promoter and introduced into the genome of the DCP-degrading bacterium by using a transposon delivery system. The transposon-located antibiotic marker was subsequently removed. Growth of the engineered bacterium on TCP was indeed observed. The genetically engineered TCP-degrading strain is stable, free of any additional plasmid-encoded antibiotic resistance marker and has the ability to completely mineralize TCP with quantitative stoichiometric release of inorganic chloride.
More than 80 percent removed TCP
The application of the strain in lab-scale bio-reactors was also investigated by Samin. Her results indicate that with the constructed strains, the reactor removed TCP (80-90%) at various residence times (116 h and 23 h). During the construction of the genetically engineered bacterium, she found that haloalkane dehalogenase was exported to the periplasm even though no signal sequence was present. The results indicate the potential use of DhaA as a tag for the periplasmic export of heterologously expressed proteins.
Dissertation: Genetic engineering for trichloropropane degradation
PhD ceremony: Ms. G. Samin, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen
Last modified: | 22 August 2024 1.32 p.m. |
More news
-
03 July 2025
Erik Heeres receives RUG Impact Innovator Excellence Award
During the RUG Ventures Innovation Day, Prof. Erik Heeres of the Faculty of Science and Engineering (RUG) was awarded the Impact Innovator Excellence Award.
-
02 July 2025
€ 30 million investment for UG spin-off Portal Biotech
Portal Biotech, a pioneer in nanopore-based protein identification and sequencing technology, has raised € 30 million in Series A funding. The funding will support commercial rollout and team growth.
-
01 July 2025
‘Give seals space’
The Wadden Sea is constantly changing. Native animals need to be able to adapt in order to thrive in an environment that is shaped by the tides. By conducting research on seals in the area, PhD students Margarita Méndez-Aróstegui and Beatriz...