Research Methodology

Big Questions

- How Is the Scientific Method Used in Psychological Research? 30
- What Types of Studies Are Used in Psychological Research? 38
- What Are the Ethics Governing Psychological Research? 51
- How Are Data Analyzed and Evaluated? 55

In January 2010, 17-year-old Kelsey Raffaele (Figure 2.1) was driving after school and decided to pass a slower vehicle in front of her. When she saw an oncoming vehicle in the passing lane, she misjudged the distance and crashed, fatally. Kelsey was talking to a friend on her cell phone while driving. Her last words were “Oh [no], I’m going to crash.” The risky use of cell phones is common. Studies have found that 80 percent to 90 percent of college students admit talking or texting while driving on at least one occasion (Harrison, 2011). Many of these drivers think they will be safe doing so. Are they?

How can we confirm (and convince people) that texting or using a smartphone in some other way while driving is dangerous? Indeed, how can we confirm (and convince people of) any claim that is made? This chapter will describe how evidence is gathered and verified in psychology. In this way, you will come to understand how psychologists study behavior and mental processes. By understanding these processes, you will learn how to interpret information that is being presented to you. And by...
understanding how to interpret information, you will become an educated consumer and presenter of information. In this chapter, the big questions about research methodology are: How is the scientific method used in psychological research? What types of studies are used in psychological research? What are the ethics governing psychological research? And how are data analyzed and evaluated?

How Is the Scientific Method Used in Psychological Research?

Psychology is a science. Because they are scientists, psychologists gain accurate knowledge about behavior and mental processes only by observing the world and measuring aspects of it. This approach is called **empiricism**. To be confident about the conclusions drawn from their observations, psychologists conduct empirical research. Such an approach requires carefully planned, systematic steps. Using the methods of science allows psychologists to be confident that empirical results provide a true understanding of mental activity and behavior.

2.1 Science Has Four Primary Goals

There are four primary goals of science: description, prediction, control, and explanation. Thus, the goals of psychological science are to describe what a phenomenon is, predict when it will occur, control what causes it to occur, and explain why it occurs. For example, consider the observation that texting interferes with driving. To understand how this interference happens, we need to address each of the four goals.

We begin by asking: How many people really text while driving? Answering this question can help us describe the phenomenon of texting while driving—as in not knowing how prevalent this unsafe behavior is. Now, under what circumstances are people likely to text while driving? Answering this question can help us predict when texting while driving may occur—as in which people tend to engage in the behavior.

Next, how can we know that texting is the source of the problematic driving? Answering this question can help us be sure that it is texting and not some other factor that is responsible for the observed effects. Ultimately, knowing the answers to each of these questions leads to the question of why texting interferes with driving. Is it because people use their hands to text, or that they take their eyes off the road, or that it interferes with their mental ability to focus on driving?

Careful scientific study also enables us to understand other aspects of texting and driving, such as why people do it in the first place. Understanding how texting interferes with driving skills and why people continue to text while driving, even when they know it is dangerous, will enable scientists, technology developers, and policymakers to develop strategies to reduce the behavior.

Scientific Method Scientific evidence obtained through empirical research is considered the best possible evidence for supporting a claim. **Research** involves the careful collection, analysis, and interpretation of **data**, which are a collection of measurements gathered during the research process. In conducting research, scientists follow a systematic procedure called the **scientific method**. This procedure begins with the observation of a phenomenon and the question of why that phenomenon occurred.
THE ROLE OF THEORY The scientific method is an interaction among research, theories, and hypotheses (FIGURE 2.2). A **theory** is an explanation or model of how a phenomenon works. Consisting of interconnected ideas or concepts, a theory is used to explain prior observations and to make predictions about future events. A **hypothesis** is a specific, testable prediction, narrower than the theory it is based on.

How can we know whether a theory is good? The best theories are those that produce a wide variety of testable hypotheses. An especially important feature of good theories is that they should be **falsifiable**. That is, it should be possible to test hypotheses that show the theory is wrong.

Moreover, a good theory is supported by the data. For instance, if our theory is that safe driving requires paying attention, then studies should show this. The more studies that show this, the better the support for the theory.

A classic example of a theory that is not falsifiable comes from Sigmund Freud. In his treatise *The Interpretation of Dreams* (1900), Freud outlined the theory that all dreams represent the fulfillment of an unconscious wish. From a scientific perspective, Freud’s theory was not good, because it generated few testable hypotheses regarding the actual function of dreams. Since the theory lacked testable hypotheses, researchers were left with no way to evaluate whether the wish fulfillment theory was either reasonable or accurate. After all, unconscious wishes are, by definition, not known to anyone, including the person having the dreams. As a result, not only is there no way to prove that dreams do represent unconscious wishes, but there is no way to prove that dreams do not represent unconscious wishes. Thus, the theory is frequently criticized for not being falsifiable.

By contrast, the developmental psychologist Jean Piaget (1924) proposed a theory of infant and child development (see Chapter 9, “Human Development”). According to Piaget’s theory, cognitive development occurs in a fixed series of “stages,” from birth to adolescence. From a scientific standpoint, this theory was good because it led to a number of hypotheses. These hypotheses concerned the specific kinds of behaviors that should be observed at each stage of development. In the decades since its proposal, the theory has generated thousands of scientific papers. Our understanding of child development has been enhanced both by studies that supported Piaget’s stage theory and by those that failed to support it.

Good theories also tend toward simplicity. This idea has historical roots in the writings of the fourteenth-century English philosopher William of Occam. Occam

FIGURE 2.2

The Scientific Method

The scientific method reflects a cyclical process: A theory is formulated based on evidence from many observations and refined based on hypothesis tests (scientific studies). From the theory, scientists derive one or more testable hypotheses. Scientists then conduct research to test the hypotheses. Findings from the research might prompt scientists to reevaluate and adjust the theory. A good theory evolves over time, and the result is an increasingly accurate model of some phenomenon.
proposed that when two competing theories exist to explain the same phenomenon, the simpler of the two theories is generally preferred. This principle is known as Occam’s razor or the law of parsimony. As long as a simple theory seems to describe the data, there is little need to develop more-complex theories.

Q Why was Freud’s theory of dreams not a good theory?

2.2 The Scientific Method Tests Hypotheses

The opening of this chapter considered cell phone use while driving. Let’s say that, based on what you have read online, you develop the theory that safe driving requires paying attention. How can you determine if this theory is true? To do so, you need to conduct research. After an observation has been made and a theory has been formulated, the scientific method follows a series of seven steps (FIGURE 2.3):

Step 1: Frame a Research Question
A good theory leads to a wide variety of interesting research questions. For your theory that safe driving requires paying attention, the questions might include “Under
what circumstances do people not pay attention to their driving?” and “Does texting while driving interfere with attention?” Researchers can begin with any question, but typically they start with a basic question that directly tests the theory, such as “Does paying attention to texting interfere with driving ability?”

Step 2: Conduct a Literature Review

Once you have a research idea, you want to perform a literature review as soon as possible. A literature review is a review of the scientific literature related to your theory. There are many resources available to assist with literature reviews, including scientific research databases such as PsycINFO, Google Scholar, and PubMed. You can search these databases by keywords, such as “cell phones and driving” or “cell phones and accidents.” The results of your searches will reveal if and how other scientists have been testing the same idea or similar ones. For example, different scientists may have approached this topic at different levels of analysis (discussed in Chapter 1). Their approaches may help guide the direction of your research.

Step 3: Form a Hypothesis

Based on what you learn in your literature review, you design tests—that is, specific research studies—aimed at examining the theory’s predictions. These specific, testable research predictions are your hypotheses.

If your theory is true, then the tests should provide evidence that doing something distracting while driving is related to problems. One of your hypotheses therefore might be: “Using a cell phone while driving is associated with more accidents.” To test this hypothesis, you might compare people who use a cell phone frequently while driving with people who do not use a cell phone frequently while driving. You would record how often the people in these groups have accidents. If these results do not differ, this finding raises questions about whether the theory is true.

Step 4: Design a Study

Designing a study refers to deciding which research method (and thus, level of analysis) you want to use to test your hypothesis. To test whether texting is related to more accidents, you could conduct a survey: Give people a questionnaire that asks how often they text while driving and how many accidents they have had. This method is used widely to gain initial insight into your hypothesis. In large surveys of high school students and college students, more than 40 percent reported texting while driving at least once in the previous 30 days (Olsen, Shults, & Eaton, 2013).

Instead of a survey, you could conduct a naturalistic observation: Watch a particular group of drivers over time and measure how often they text while driving or talk on a cell phone while driving. To establish how cell phone use affects driving, you could more intensively examine drivers by placing devices in their cars to measure aspects such as driving speed and acceleration. Or you could use video cameras to create an objective record of risky driving behaviors, such as running stop signs. One study of 151 drivers using such methods found that cell phone use, especially texting, was a strong predictor of crashes and near-crashes (Klauer et al., 2014).

Alternatively, you could perform an actual experiment, assigning one group of people to texting while driving and a second group of people to no texting, then comparing the number of accidents they have. Obviously, performing a test of this kind on public roads would be dangerous and unethical. Thus, for research like this, scientists use driving simulators that mimic real-world driving conditions (see the photo in Figure 2.3, Step 4). As you will see later.
when we discuss the different research methods available to test your hypothesis, there are advantages and disadvantages to each of these methods.

Step 5: Conduct the Study
Once you choose your research method, you have to conduct the study: Recruit participants and measure their responses. Many people call this step collecting data or gathering data. If you conduct a survey to see whether people who use cell phones while driving have more accidents, your data will include both the frequency with which people use cell phones while driving and how many accidents they have. All the research methods require you to clarify how you are defining “driving while texting” and “accidents.” You must also take care in defining the appropriate size and type of sample of participants. These issues are addressed more completely later in this chapter, under the discussions of operational definitions and sampling.

Step 6: Analyze the Data
The next step is to analyze your data. There are two main ways to analyze data. First, you want to describe the data. What was the average score? How “typical” is that average? Suppose the average driver in your study has five years of driving experience. Does this statement mean five is the most common number of years of driving experience, or that five is the numerical average if you divide the total number of years driven by the total number of participants, or that about half of drivers have this many years of experience? Second, you will want to know what conclusions you can draw from your data. You need to know whether your results are meaningful or whether they happened by chance. To determine the usefulness of your data, you analyze the data inferentially. That is, you ask whether you found a significant effect. Asking this question enables you to make inferences about your data—to infer whether your findings might be true for the general population. You accomplish data analyses by using descriptive and inferential statistics, which are described later in the chapter.

Step 7: Report the Results
Unreported results have no value, because no one can use any of the information. Instead, scientists make their findings public to benefit society, to support the scientific culture, and to permit other scientists to build on their work. Various forums are available for distributing the results of scientific research.

Brief reports can be presented at scientific conferences. The most popular formats for presenting data at conferences are talks and poster sessions. At the latter, people create large posters that display information about their study (FIGURE 2.4A). During these sessions, researchers stand by their posters and answer questions to those who stop by to read the poster (FIGURE 2.4B). Conference presentations are especially good for reporting preliminary data or for presenting exciting or cutting-edge results.

Full reports should be published in a peer-reviewed scientific journal. Full reports consist of the background and significance of the research, the full methodology for how the question was studied, the complete results of the descriptive and inferential statistical analyses, and a discussion of what the results mean in relation to the accumulated body of scientific evidence.

Sometimes the results of research are of interest to the general public. People in the media attend scientific conferences and read scientific journals so they can report on exciting findings. Eventually, interesting and important science will reach a general audience.

Q In the scientific method, what do you call a specific, testable prediction?

A Hypothesis.

2.3 The Scientific Method Is Cyclical

Good research reflects the cyclical process shown in Figure 2.2. Once the results of a research study are in, the researchers return to the original theory to evaluate the implications of the data. If the study was conducted competently (i.e., used appropriate methods and data analysis to test the hypothesis), the data either support and strengthen the theory or suggest that the theory be modified or discarded. Then the process starts all over again. Yes, the same sort of work needs to be performed repeatedly. No single study can provide a definitive answer about any phenomenon. No theory would be discarded on the basis of one set of data. Instead, we have more confidence in scientific findings when research outcomes are replicated.

REPLICATION Replication involves repeating a study to see if the results are the same (or similar). When the results from two or more studies are the same, or at least support the same conclusion, confidence increases in the findings. Ideally, researchers not affiliated with those who produced the original finding conduct replication studies. These independent replications provide more powerful support because they rule out the possibility that some feature of the original setting, such as the personality of the experimenter, may have contributed to the findings.

Replication has become an increasingly important topic in science. The last few decades have seen an explosion of research findings, particularly in medicine. Unfortunately, it seems that one week we hear about some finding and then the next week we hear about a conflicting finding. For example, does coffee give you cancer or help prevent it? It is hard for nonexperts to know what to believe about such phenomena. Recently, numerous scientists have called for new efforts to increase the likelihood that published studies are true (Ioannidis, 2014). Replication is an important method for increasing our confidence in scientific outcomes (Goodman, Fanelli, & Ioannidis, 2016).

The growing emphasis on replication has also been true within psychological science (Klein et al., 2014). In an initiative called the Reproducibility Project, a large group of psychologists sought to replicate findings that had been published during the year 2008 in three selected journals. Of the 100 studies they repeated, only 39 percent replicated (Open Science Collaboration, 2015). Their findings, published in the prestigious journal *Science*, provoked strong reactions from many psychologists.

Although all psychologists recognize the importance of replication, there is also a growing recognition that researchers need to think critically in conducting replication studies. For instance, some of the failed replications in the Reproducibility Project seem problematic. Consider an attempt to replicate a study conducted at Stanford University on race relations using a replication sample that consisted of nonnative English speakers in Amsterdam (Gilbert et al., 2016). Can you see how contextual factors, such as the research setting or time period, are likely to affect research findings? Imagine trying to replicate a study published in the 1950s on attitudes toward marriage equality (FIGURE 2.5). Attitudes and circumstances change. Study results also will differ depending on cultural norms. For instance, attitudes toward marriage equality vary substantially around the world.
globe. An analysis of the 100 studies in the Reproducibility Project found that those studies most influenced by contextual factors were the least likely to replicate (Van Bavel et al., 2016). Researchers need to be sensitive to contextual factors in designing replication studies.

Although contextual factors may explain some failures to replicate, other such failures can be explained by problematic research methods, such as poor design, not having enough research participants, or various experimenter biases. You will learn about many of these methodology problems in this chapter. You will also see how using good research methods strengthens what we learn through the scientific process.

THEORY REFINEMENT Often, more than one theory may apply to a particular aspect of human behavior. For instance, the theory that safe driving requires attention might be accurate, but suppose you want to know more about this phenomenon. How does failing to pay attention impair driving? You might develop new theories that take into account the skills needed to be a good driver.

You could theorize that distractions, such as using a cell phone, impair driving because they require taking your eyes off the road and so you do not notice road hazards. It is also possible that doing multiple things at once impairs your ability to think and therefore you make bad decisions while driving. If you have multiple theories, you can design critical studies that directly contrast the theories to see which theory best explains the data. Replication is another means of strengthening support for some theories, helping weed out weaker theories, and refining theories to make them more precise.

Why is considering context important for replications?

2.4 Evaluating Scientific Findings Requires Critical Thinking

As you learned in Chapter 1, one important goal of your education is to become a critical thinker. Critical thinking was defined in Chapter 1 as systematically questioning and evaluating information using well-supported evidence. As this definition makes clear, critical thinking is an ability—a skill. It is not something you can just memorize and learn, but something you have to practice and develop over time. Most of your courses should provide opportunities for you to practice being a critical thinker. Critical thinking is not just for scientists. It is essential for becoming an educated consumer of information.

The first step in critical thinking is to question information. What kind of information? To develop the skeptical mindset you need for critical thinking, you should question every kind of information. For any claim you see or hear, ask yourself, “What is the evidence in support of that claim?” For example, in the opening vignette of this chapter, we made the claim that texting while driving is dangerous. What kind of evidence did we present in support of this claim? Was the evidence based on direct, unbiased observation, or did it seem to be the result of rumor, hearsay, or intuition? In fact, think of your own beliefs and behavior. Do you believe that texting while driving is dangerous? If you do, what evidence led you to this belief? If you believe that texting while driving is dangerous, do you still text while driving? If so, why do you do it? Do you think the evidence you have seen or heard is not very good? If so, what makes the evidence not very good? Are you relying on so-called alternative facts to support your view? But how can facts be “alternative”? Facts are facts—pure information, not statements based on personal beliefs.
HYPOTHESIS: Using a cell phone while driving is more dangerous than driving while intoxicated.

RESEARCH METHOD: Forty adults, ranging in age from 22 to 34, were recruited by a newspaper advertisement to participate in a research study on driving. In the study, the participants were asked to perform two separate tests in a driving simulator: (a) driving while having verbal conversations via a hand-held or hands-free device, and (b) driving after consuming enough alcohol to achieve a .08 percent blood-alcohol content (BAC), a level that is at or above the legal limit for intoxication in most states (see table). To establish their baseline driving performances, all the participants initially drove in the simulator without talking on the phone and without having consumed alcohol.

The tests occurred on two different days. Half of the participants talked on the phone while driving the first day and drank before driving on the second day. The other half drank before driving on the first day and talked on the phone while driving the second day.

RESULTS: Compared to the baseline driving performance, talking on the phone (with either a hand-held or hands-free device) caused a delayed response to objects in the driving scene, including brake lights on the car ahead, and a greater number of rear-end collisions. When they were intoxicated, the participants drove aggressively. They followed other cars more closely and hit the brake pedal much harder than they did in the baseline condition. Talking on a cell phone produced more collisions than driving while intoxicated.

CONCLUSION: Both talking on the cell phone and driving while intoxicated led to impaired driving compared to the baseline condition. Talking on the cell phone, whether holding the phone or not, led to more collisions than when the participants were intoxicated.

Blood Alcohol Content and Its Effects

In the United States, blood alcohol content is measured by taking a sample of a person’s breath or blood and determining the amount of alcohol in that sample. The result is then converted to a percentage. For example, in many states the legal limit is .08 percent. To reach this level, a person’s bloodstream needs to have 8 grams of alcohol for every 100 milliliters of blood. Different blood alcohol levels produce different physical and mental effects. These effects also vary from person to person. This table shows typical effects.

<table>
<thead>
<tr>
<th>BAC LEVEL</th>
<th>EFFECTS</th>
</tr>
</thead>
</table>
| .01-.06 | Feeling of relaxation
 | Sense of well-being
 | Thought, judgment, and coordination are impaired. |
| .07-.10 | Loss of inhibitions
 | Extroversion
 | Reflexes, depth perception, peripheral vision, and reasoning are impaired. |
| .11-.20 | Emotional swings
 | Sense of sadness or anger
 | Reaction time and speech are impaired. |
| .21-.29 | Stupor
 | Blackouts
 | Motor skills are impaired. |
| .30-.39 | Severe depression
 | Unconsciousness
 | Breathing and heart rate are impaired. |
| >.40 | Breathing and heart rate are impaired.
 | Death is possible. |

QUESTION: Did the results of the study support the original hypothesis?
ANSWER: Yes, because driving while talking on a cell phone led to impaired driving compared to when the participants were not talking on the phone.

Another aspect of questioning when thinking critically is to ask for the definition of each part of the claim. For example, imagine you hear the claim that using a cell phone while driving is more dangerous than driving while intoxicated (see “The Methods of Psychology: Cell Phone Versus Intoxication,” on p. 37). Upon hearing this claim, a critical thinker immediately asks for definitions. For example, what do they mean by “using a cell phone”? Do they mean talking or texting? Do they mean a handheld or a hands-free device? And what do they mean by “intoxicated”? Would achieving this state require only a little alcohol or a lot of alcohol? Could the person have used another drug?

Answering questions of this kind is the second step in critical thinking: the evaluation of information. To answer our questions, we need to go to the source of the claim.

To get to the source of any claim, you need to think about where you first saw or heard the claim. Did you hear the claim on TV or the radio? Did you read about it in a newspaper? Did you see it on the Internet? Was it from a Web site known for fake news, which is not news at all but stories without supporting evidence that are made up for personal reasons, advertising, or political purposes? Next, you need to think about the evidence offered by the source to support the claim.

Here is where the “well-supported evidence” comes in. Does the evidence at the source of the claim take the form of scientific evidence? Or does it take the form of intuition or simply someone in authority making the claim? Did the source retrieve this information from a newswire? Did it come from an interview with a scientist? Was it summarized from a scientific journal?

In science, well-supported evidence typically means research reports based on empirical data that are published in peer-reviewed journals (FIGURE 2.6). “Peer review” is a process by which other scientists with similar expertise evaluate and critique research reports before publication. Peer review ensures that published reports describe research studies that are well designed (using appropriate research and analysis methods, considering all factors that could explain the findings), that are conducted in an ethical manner, and that address an important question.

However, peer review does not mean that flawed studies are never published. Thus, critical thinkers must always stay vigilant—always be on the lookout for unreasonable claims and conclusions that may not be valid interpretations of the data. Hone your critical thinking skills by practicing them as often as possible.

FIGURE 2.6
Peer-Reviewed Journals
Research reports in peer-reviewed journals are the most trustworthy source for scientific evidence.

Learning Objectives

- Distinguish between descriptive studies, correlational studies, and experiments.
- List the advantages and disadvantages of different research methods.
- Explain the difference between random sampling and random assignment, and explain when each might be important.

What Types of Studies Are Used in Psychological Research?

Once a researcher has defined a hypothesis, the next issue to be addressed is the type of research method to be used. There are three main types of research methods: descriptive, correlational, and experimental. These methods differ in the extent to which the researcher has control over the variables in the study. The amount of control over the variables in turn determines the type of conclusions the researcher can draw from the data.

All research involves variables. A variable is something in the world that can vary and that the researcher can manipulate (change), measure (evaluate), or both. In a study of texting and driving ability, some of the variables would be number of texts sent, number of texts received, familiarity with the texting device, how coordinated a person is, and driving ability and cell phone experience.
2.5 Descriptive Research Consists of Case Studies, Observation, and Self-Report Methods

Descriptive research involves observing behavior to describe that behavior objectively and systematically. Descriptive research helps scientists achieve the goals of describing what phenomena are and (sometimes) predicting when or with what other phenomena they may occur. However, by nature, descriptive research cannot achieve the goals of control and explanation (only the true experimental method, described later in this chapter, can do that).

Descriptive methods are widely used to assess many types of behavior. For example, an observer performing descriptive research might record the types of foods that people eat in cafeterias, count the number and types of mating behaviors that penguins engage in during their mating season, or tally the number of times poverty or mental illness is mentioned during a presidential debate (FIGURE 2.7). Each of these observations offers important information that can be used to describe current behavior and even predict future behavior. In no case does the investigator control the behavior being observed or explain why any particular behavior occurred.

There are three basic types of descriptive research methods: case studies, observations, and self-report methods and interviews.

CASE STUDIES A case study is the intensive examination of an unusual person or organization. By intensive examination, we mean observation, recording, and description. An individual might be selected for intensive study if he or she has a special or unique aspect, such as an exceptional memory, a rare disease, or a specific type of brain damage. An organization might be selected for intensive study because it is doing something very well (such as making a lot of money) or very poorly (such as losing a lot of money). The goal of a case study is to describe the events or experiences that lead up to or result from the exceptional aspect.

One famous case study in psychological science involves a young American man whose freak injury impaired his ability to remember new information (Squire, 1987). N.A. was born in 1938. After a brief stint in college, he joined the Air Force and was stationed in the Azores, where he was trained to be a radar technician. One night, he was assembling a model airplane in his room. His roommate was joking around with a miniature fencing foil, pretending to jab at the back of N.A.’s head. When N.A. turned around suddenly, his roommate accidentally stabbed N.A. through the nose and up into his brain (FIGURE 2.8).

Although N.A. seemed to recover from his injury in most ways, he developed extreme problems remembering events that happened to him during the day. He could remember events before his accident, and so he was able to live on his own, keeping his house tidy and regularly cutting his lawn. It was new information that he could not remember. He had trouble watching television because he forgot the storylines, and he had difficulty holding conversations because he forgot what others had just said. Subsequent studies of N.A.’s brain using imaging techniques revealed damage to specific regions not traditionally associated with memory difficulties (Squire, Amaral, Zola-Morgan, Kritchevsky, & Press, 1989). The case study of N.A. helped researchers develop new models of the brain mechanisms involved in memory.

However, not everyone who suffers damage to this brain region experiences the same types of problems as N.A. Such differences highlight the major problem with case studies. Because only one person or organization is the focus of a case study, scientists cannot tell from that study if the same thing would happen to other people...
or organizations who have the same experience(s). The findings from case studies do not necessarily generalize, or apply to the general population.

OBSERVATIONAL STUDIES Two main types of observational techniques are used in research: participant observation and naturalistic observation. In participant observation (FIGURE 2.9), the researcher is involved in the situation. In naturalistic observation (FIGURE 2.10), the observer is passive, separated from the situation and making no attempt to change or alter ongoing behavior.

These observational techniques involve the systematic assessment and coding of overt behavior. Suppose you hear about a person who was texting while walking, stumbled off a curb, and was killed by an oncoming truck. You develop the hypothesis that using a cell phone while walking can cause problems with walking. How do you operationally define “problems with walking”? Once you have defined your terms, you need to code the forms of behavior you will observe. Your coding might involve written subjective assessments (e.g., “He almost got hit by a car when he walked into traffic”). Alternatively, your coding might use predefined categories (e.g., “1. Walked slowly,” “2. Walked into traffic,” “3. Stumbled”). Perhaps, after recording your data, you would create an index of impaired walking behavior by adding together the frequencies of each coded category. You might then compare the total number of coded behaviors when people were using a cell phone or not. Studies such as these have shown that cell phone use does impair walking ability (Schwebel et al., 2012; Stavrinos, Byington, & Schwebel, 2011). Pedestrian accidents—not all of them involving cell phones—kill more than 500 college-age students per year and injure more than 12,000 (National Highway Traffic Safety Administration, 2012b).

SELF-REPORTS AND INTERVIEWS Ideally, observation is an unobtrusive approach for studying behavior. By contrast, asking people about themselves, their thoughts, their actions, and their feelings is a much more interactive way of collecting data. Methods of posing questions to participants include surveys, interviews, and questionnaires. The type of information sought ranges from demographic facts (e.g., ethnicity, age, religious affiliation) to past behaviors, personal attitudes, beliefs, and so on: “Have you ever used an illegal drug?” “Should people who drink and drive be jailed for a first offense?” “Are you comfortable sending food back to the kitchen in a restaurant when there is a problem?” Questions such as these require people to recall certain events from their lives or reflect on their mental or emotional states.

Self-report methods, such as surveys or questionnaires, can be used to gather data from a large number of people in a short time (FIGURE 2.11). Questions can be mailed out to a sample drawn from the population of interest or handed out in appropriate locations. They are easy to administer and cost-efficient.

Interviews, another type of interactive method, can be used successfully with groups that cannot be studied through surveys or questionnaires, such as young children. Interviews are also helpful in gaining a more in-depth view of a respondent’s opinions, experiences, and attitudes. Thus, the answers from interviewees sometimes inspire avenues of inquiry that the researchers had not planned. (For a recap of the types of research methods, see FIGURE 2.12.)

Q What is a major limitation of case studies?

ANSWER: Their findings might not generalize or apply to people beyond the particular case.
2.6 Descriptive Studies Need to Guard Against Bias

A problem common to all descriptive studies is that behavior may be affected by being studied. For instance, one problem in asking-based methods of data collection is that people often introduce biases into their answers. These biases make it difficult to discern an honest or true response. In particular, people may not reveal personal information that casts them in a negative light. We know we are not supposed to use cell phones while driving, and so we might be reluctant to admit regularly doing so. Researchers therefore have to consider the extent to which their questions produce socially desirable responding, or faking good, in which the person responds in a way that is most socially acceptable.

REACTIVITY When conducting observational research, scientists must consider the critical question of whether the observer should be visible. The concern here is that the presence of the observer might alter the behavior being observed. Such an alteration is called reactivity. People may feel compelled to make a positive impression on an observer, so they may act differently when they believe they are being observed. For example, drivers who know they are being observed might be less likely to use their cell phones.

Reactivity affected a now-famous series of studies on workplace conditions and productivity. Specifically, the researchers manipulated working conditions and then observed workers’ behavior at the Hawthorne Works, a Western Electric manufacturing plant in Cicero, Illinois, between 1924 and 1933 (Olson, Hogan, & Santos, 2006; Roethlisberger & Dickson, 1939). The conditions included different levels of lighting, different pay incentives, and different break schedules. The main measured variable was how long the workers took to complete certain tasks.

Throughout the studies, the workers knew they were being observed. Because of this awareness, they responded to changes in their working conditions by increasing productivity. The workers did not speed up continuously throughout the various studies. Instead, they worked faster at the start of each new manipulation, regardless of the nature of the manipulation (longer break, shorter break, one of various changes to the pay system, and so on). The **Hawthorne effect** refers to changes in behavior that occur when people know that others are observing them (see “The Methods of Psychology: The Hawthorne Effect,” on p. 42).

FIGURE 2.11

Self-Report Methods

Self-report methods, such as surveys or questionnaires, can be used to gather data from a large number of people. They are easy to administer, cost-efficient, and a relatively fast way to collect data.

- **participant observation**
 A type of descriptive study in which the researcher is involved in the situation.

- **naturalistic observation**
 A type of descriptive study in which the researcher is a passive observer, separated from the situation and making no attempt to change or alter ongoing behavior.

- **self-report methods**
 Methods of data collection in which people are asked to provide information about themselves, such as in surveys or questionnaires.

- **reactivity**
 The phenomenon that occurs when knowledge that one is being observed alters the behavior being observed.
The Methods of Psychology

The Hawthorne Effect

HYPOTHESIS: Being observed can lead participants to change their behavior.

RESEARCH METHOD (OBSERVATIONAL):
1. During studies of the effects of workplace conditions, the researchers manipulated several independent variables, such as the levels of lighting, pay incentives, and break schedules.
2. The researchers then measured the dependent variable, the speed at which workers did their jobs.

RESULTS: The workers’ productivity increased when they were being observed, regardless of changes to their working conditions.

CONCLUSION: Being observed can lead participants to change their behavior.

QUESTION: Why do people change their behavior when they know they are being observed?

ANSWER: People like to make good impressions.

During studies of the effects of workplace conditions, the researchers manipulated several independent variables, such as the levels of lighting, pay incentives, and break schedules. The researchers then measured the dependent variable, the speed at which workers did their jobs. The workers’ productivity increased when they were being observed, regardless of changes to their working conditions. Being observed can lead participants to change their behavior.

QUESTION: Why do people change their behavior when they know they are being observed?

ANSWER: People like to make good impressions.

In conducting observational research, scientists must guard against observer bias. This flaw consists of systematic errors in observation that occur because of an observer’s expectations. Observer bias can especially be a problem if cultural norms favor inhibiting or expressing certain behaviors. For instance, in many societies women are freer to express sadness than men are. If observers are coding men’s and women’s facial expressions, they may be more likely to rate female expressions as indicating sadness because they believe that men are less likely to show sadness. Men’s expressions of sadness might be rated as annoyance or some other emotion. Likewise, in many societies women are generally expected to be less assertive than men. Observers therefore might rate women as more assertive when the women exhibit the same behavior as men. Cultural norms can affect both the participants’ actions and the way observers perceive those actions.

EXPERIMENTER EXPECTANCY EFFECT

There is evidence that observer expectations can even change the behavior being observed. This phenomenon is known as the experimenter expectancy effect.

In a classic study by the social psychologist Robert Rosenthal, college students trained rats to run a maze (Rosenthal & Fode, 1963). Half the students were told their
rats were bred to be very good at running mazes. The other half were told their rats were bred to be poor performers. In reality, there were no genetic differences between the groups of rats. Nonetheless, when students believed they were training rats that were bred to be fast maze learners, their rats learned the task more quickly! Thus, these students’ expectations altered how they treated their rats. This treatment in turn influenced the speed at which the rats learned. The students were not aware of their biased treatment, but it existed. Perhaps they supplied extra food when the rats reached the goal box at the end of the maze. Or perhaps they gave the rats inadvertent cues as to which way to turn in the maze. They might simply have stroked the rats more often.

How do researchers protect against experimenter expectancy effects? It is best if the person running the study is blind to, or unaware of, the study’s hypotheses. For example, the study just described seemed to be about rats’ speed in learning to run through a maze. Instead, it was designed to study experimenter expectancy effects. The students believed they were “experimenters” in the study, but they were actually the participants. Their work with the rats was the subject of the study, not the method. Thus, the students were led to expect certain results so that the researchers could determine whether the students’ expectations affected the results of the rats’ training.

Q Suppose that students who know they are in a study of race relations are careful to avoid saying anything offensive. What concern might you have about this study?

2.7 Correlational Studies Describe and Predict How Variables Are Related

Correlational studies examine how variables are naturally related in the real world, without any attempt by the researcher to alter them or assign causation between them (FIGURE 2.13). Correlational studies are used to describe and predict relationships between variables. They cannot be used to determine the causal relationship between the variables.

Consider an example. On your college application, you likely had to provide a score from a standardized test, such as the SAT or ACT. Colleges require these numbers because standardized test scores have been shown to correlate with college success. That is, generally, people who score higher on standardized tests tend to perform better in college. However, does this mean that scoring well on a standardized test will cause you to do better in college? Or that doing well in school will cause you to do better on standardized tests? Absolutely not. Many people score well on tests but do not perform well in school. Alternatively, many people score poorly on standardized tests but enjoy great success in college.

DIRECTION OF CORRELATION The first step in examining the correlation between two variables is to create a scatterplot. This type of graph provides a convenient picture of the data.

When higher or lower values on one variable predict higher or lower values on a second variable, we say there is a positive correlation between them. A positive correlation describes a situation where both variables either increase or decrease together—they “move” in the same direction (FIGURE 2.14A). For example, people with higher ACT scores generally have higher college GPAs. People with lower ACT scores tend to have lower GPAs.
scores generally have lower college GPAs. However, remember that correlation does not equal “cause and effect.” Scoring higher or lower on the ACT will not cause you to earn a higher or lower GPA.

Remember, too, that positive in this case does not mean “good.” For example, there is a very strong positive correlation between smoking and cancer. There is nothing good about this relationship. The correlation simply describes how the two variables are related: In general, people who smoke experience higher rates of cancer. The more they smoke, the higher their risk of getting cancer.

Some variables are negatively correlated. In a negative correlation, the variables move in opposite directions. An increase in one variable predicts a decrease in the other variable. A decrease in one variable predicts an increase in the other variable (FIGURE 2.14B). Here, negative does not mean “bad.” Consider exercise and weight. In general, the more people exercise regularly, the less they are likely to weigh.

Some variables are just not related. In this case, we say there is a zero correlation. That is, one variable is not predictably related to a second variable (FIGURE 2.14C). For example, there is a zero correlation between height and intelligence. Tall people are neither smarter nor less smart than those who are shorter. You will learn more about correlations, and how to tell if they are statistically reliable, in Section 2.15.

THINKING CRITICALLY ABOUT CORRELATIONS Now that we have described the types of relationships that can exist, let’s practice our critical thinking skills by interpreting what these relationships mean. Recall that there is generally a negative correlation between regular exercise and weight. For some people, however, there is a positive correlation between these variables. The more they exercise, the more weight they gain. Why? Because exercise builds muscle mass. Weight lifters might bulk up to help them lift even heavier weight. Sometimes, the same phenomena can exhibit a negative correlation or a positive correlation, depending on the specific circumstances.

Now consider the positive correlation between smoking and cancer. The more a person smokes, the greater that person’s risk of cancer. Does that relationship mean smoking causes cancer? Not necessarily. Just because two things are related, even strongly related, does not mean that one is causing the other. Many genetic, behavioral, and environmental variables may contribute both to whether a person chooses to smoke and to whether the person gets cancer. Complications of this kind prevent researchers from drawing causal conclusions from correlational studies. Two such complications are the directionality problem and the third variable problem.

DIRECTIONALITY PROBLEM One problem with correlational studies is in knowing the direction of the relationship between variables. This sort of ambiguity is known as the directionality problem. For example, the more weight people gain, the less likely they might be to exercise, in part because exertion becomes more unpleasant. Consider another example. Suppose you survey a large group of people about their sleeping habits and their levels of stress. Those who report sleeping little also report having a higher level of stress. Does lack of sleep increase stress levels, or does increased stress lead to shorter and worse sleep? Both scenarios seem plausible:

<table>
<thead>
<tr>
<th>Sleep (A) and stress (B) are correlated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Does less sleep lead to more stress? (A → B)</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>▪ Does more stress lead to less sleep? (B → A)</td>
</tr>
</tbody>
</table>
THIRD VARIABLE PROBLEM Another drawback with all correlational studies is the third variable problem. Instead of variable A producing variable B, as a researcher might assume, it is possible that a third variable, C, is responsible for both A and B. Consider the relationship between texting while driving and dangerous driving. It is possible that people who are risk takers in their daily lives are more likely to text while driving. It is also possible that these people are likely to drive dangerously. Thus, the factor that leads to both texting while driving and dangerous driving is the third variable, risk-taking:

Texting while driving (A) is correlated with driving dangerously (B).
- Risk-taking (C) leads some people to text while driving. (C → A)
- Risk-taking (C) leads some people to drive dangerously. (C → B)

Indeed, research has shown that those who text while driving are also likely to engage in a variety of other risky behaviors, such as not wearing seatbelts, riding with a driver who had been drinking, or even drinking alcohol and driving (Olsen, Shults, & Eaton, 2013). Thus, it is possible that both texting while driving and dangerous driving generally result from risk-taking, a third variable.

Sometimes the third variable is obvious. Suppose you were told that the more churches there are in a town, the greater the rate of crime. Would you conclude that churches cause crime? In looking for a third variable, you would realize that the population size of the town affects the number of churches and the frequency of crime. But sometimes third variables are not so obvious and may not even be identifiable. It turns out that even the relationship between smoking and cancer is plagued by the third variable problem. Evidence indicates that there is indeed a genetic predisposition—a built-in vulnerability to smoking—that can combine with environmental factors to increase the probability that some people will smoke and that they will develop lung cancer (Paz-Elizur et al., 2003; Thorgeirsson et al., 2008). Thus, it is impossible to conclude on the basis of correlational research that one of the variables is causing the other.

ETHICAL REASONS FOR USING CORRELATIONAL DESIGNS Despite such potentially serious problems, correlational studies are widely used in psychological science. Some research questions require correlational research designs for ethical reasons. For example, as mentioned earlier, it would be unethical to send drivers out into traffic and ask them to text as part of an experiment. Doing so would put the drivers and others at risk.

There are many important real-world experiences that we want to know about but would never expose people to as part of an experiment. Suppose you want to know if soldiers who experience severe trauma during combat have more difficulty learning new tasks after they return home than soldiers who have experienced less-severe trauma during combat. Even if you theorize that severely traumatic combat experiences cause later problems with learning, it would be unethical to induce trauma in some soldiers so that you could compare soldiers who had experienced different degrees of trauma. (Likewise, most research on psychopathology—psychological disorders—uses the correlational method, because it is unethical to induce disorders in people to study the effects.) For this research question, you would need to study the soldiers’ ability to learn a new task after they had returned home. You might, for example, observe soldiers who were attempting to learn computer programming. The participants in your study would have to vary in how much they experienced trauma during combat. You would correlate the severity of the trauma they experienced with how well they learned computer programming.
MAKING PREDICTIONS Correlational studies can be used to determine that two variables are associated with each other. In the example just discussed, the variables would be trauma during combat and learning difficulties later in life. By establishing such connections, researchers are able to make predictions. If you found the association you expected between severe trauma during combat and learning difficulties, you could predict that soldiers who experience severe trauma during combat will—again, on average—have more difficulty learning new tasks when they return than soldiers who do not experience severe trauma during combat. Because your study drew on but did not control the soldiers' wartime experiences, however, you have not established a causal connection (FIGURE 2.15).

By providing important information about the natural relationships between variables, researchers are able to make valuable predictions. For example, correlational research has identified a strong relationship between depression and suicide. For this reason, clinical psychologists often assess symptoms of depression to determine suicide risk. Typically, researchers who use the correlational method use other statistical procedures to rule out potential third variables and problems with the direction of the effect. Once they have shown that a relationship between two variables holds even when potential third variables are taken into account, researchers can be more confident that the relationship is meaningful.

Q Suppose a study finds that hair length has a negative correlation with body weight: People with shorter hair weigh more. Should you grow your hair to lose weight?

ANSWER: No, because correlation doesn’t equal causation. Other variables could be affecting this relationship. For example, men typically have shorter hair and weigh more. By providing important information about the natural relationships between variables, researchers are able to make valuable predictions. For example, correlational research has identified a strong relationship between depression and suicide. For this reason, clinical psychologists often assess symptoms of depression to determine suicide risk. Typically, researchers who use the correlational method use other statistical procedures to rule out potential third variables and problems with the direction of the effect. Once they have shown that a relationship between two variables holds even when potential third variables are taken into account, researchers can be more confident that the relationship is meaningful.

2.8 The Experimental Method Controls and Explains

Scientists ideally want to explain what causes a phenomenon. For this reason, researchers rely on the experimental method. In experimental research, the researcher has maximal control over the situation. Only the experimental method enables the researcher to control the conditions under which a phenomenon occurs and therefore to understand the cause of the phenomenon. In an experiment, the researcher manipulates one variable to measure the effect on a second variable.

TYPES OF VARIABLES Scientists try to be as specific and as objective as possible when describing variables. Different terms are used to specify whether a variable is being manipulated or measured (FIGURE 2.16). An independent variable is the variable that gets manipulated. Researchers manipulate the variable by giving different levels of the variable to different participants. In a study, for example, one group of participants might be asked to text while driving in a simulator. Another group would be asked not to text while driving. Here, the independent variable is texting or not, which varies between the two groups.
A dependent variable is the variable that gets measured, which is why it is sometimes called the dependent measure. Another way to think of the dependent variable is as the outcome that gets measured after a manipulation occurs. That is, the value of the dependent variable depends on the changes produced in the independent variable. Thus, in a study you could measure how often people made driving mistakes. Here, the dependent variable is number of driving mistakes.

In addition to determining what variables will be studied, researchers must define these variables precisely and in ways that reflect the methods used to assess them. They do so by developing an operational definition. Operational definitions are important for research. They qualify (describe) and quantify (measure) variables so the variables can be understood objectively. The use of operational definitions enables other researchers to know precisely what variables were used, how they were manipulated, and how they were measured. These concrete details make it possible for other researchers to use identical methods in their attempts to replicate the findings.

For example, if you choose to study how driving performance is affected by cell phone use, how will you qualify cell phone use? Do you mean talking, texting, reading content, or some combination of these activities? How will you then quantify cell phone use? Will you count how many times a person uses the cell phone in an hour? Then, how will you quantify and qualify driving performance so you can judge whether it is affected by cell phone use? Will you record the number of accidents, the closeness to cars up ahead, the reaction time to red lights or road hazards, speeding? The operational definitions for your study need to spell out the details of your variables.

MANIPULATING VARIABLES In an experiment, the independent variable (IV) is what is manipulated. That is, the researchers choose what the study participants do or are exposed to.

In a study on the effects of using a cell phone while driving, the IV would be the type of cell phone use. While in a driving simulator, some participants might simply hold the phone, some might have to answer questions over the phone, and some might have to read and answer text messages.

An IV has “levels,” meaning the different values that are manipulated by the researcher. All IVs must have at least two levels: a “treatment” level and a “comparison” level. In the study of cell phone use and driving ability, the people who actively used the cell phone received the “treatment.” A group of study participants who receive the treatment is the experimental group. Since in this hypothetical study some participants talk on the cell phone and others text, there are actually two experimental groups.

In an experiment, you always want to compare your experimental group with at least one control group. A control group consists of similar (or identical) participants who receive everything the experimental group receives except for the treatment. In this example, the experimental group uses a cell phone to talk or text while driving. The control group simply holds a cell phone while driving. This use of a control group includes the possibility that simply the presence of a cell phone is disruptive. To test whether handling a cell phone is disruptive, the control group could be drivers not holding a cell phone.

So far, we have described research where different people are in the control and experimental groups. This is called a between-groups design because different people receive different treatments. However, sometimes study participants serve as their own control group. In the repeated measures design (sometimes called within-subject design), the same people receive both treatments. For example, people would be tested driving once without a cell phone and then once with a cell phone. Differences in performance would be attributable to the different treatments. A disadvantage of
this method is that repeating the test means people have experience with the task the second time. This prior knowledge could influence performance.

The dependent variable (DV) is whatever behavioral effect is—or behavioral effects are—measured. For example, the researcher could measure how quickly the participants responded to red lights, how fast they drove, and the distance they maintained behind the car in front of them. The researcher would measure each of these DVs as a function of the IV, the type of cell phone use.

The benefit of an experiment is that the researcher can study the causal relationship between variables. If the IV (such as type of cell phone use) consistently influences the DV (such as driving performance), then the IV is assumed to cause the change in the DV.

ESTABLISHING CAUSALITY A properly performed experiment depends on rigorous control. Here, control means the steps taken by the researcher to minimize the possibility that anything other than the independent variable could be the cause of differences between the experimental and control groups.

A confound is anything that affects a dependent variable and that may unintentionally vary between the study’s different experimental conditions. When conducting an experiment, a researcher needs to ensure that the only thing that varies is the independent variable. Control thus represents the foundation of the experimental approach, in that it allows the researcher to rule out alternative explanations for the observed data.

In the study of cell phone use and driving performance, what if a car with an automatic transmission is simulated to assess driving when participants are not using a cell phone, but a car with a manual transmission is simulated to assess performance when participants are texting? Given that manual transmissions require greater dexterity to operate than automatic transmissions, any apparent effect of texting on driving performance might actually be caused by the type of car and the fact that it requires greater use of the hands. In this example, the drivers’ skills might be confounded with the type of transmission, making it impossible to determine the true effect of the texting.

Other potential confounds in research include changes in the sensitivity of the measuring instruments, such as a systematic change in a scale so that it weighs things more heavily in one condition than in another. Changes in the time of day or the season when the experiment is conducted can also confound the results. Suppose you conducted the texting and driving study so that the cell phone users were tested in snowy winter conditions and control participants were tested during dry, sunny weather. The road conditions associated with the season would be an obvious confound. The more confounds and thus alternative explanations that can be eliminated, the more confident a researcher can be that the change in the independent variable is causing the change (or effect) in the dependent variable. For this reason, researchers have to watch vigilantly for potential confounds. As consumers of research, we all need to think about confounds that could be causing particular results.

Q Which variable is manipulated, and which is measured?

2.9 Participants Need to Be Carefully Selected and Randomly Assigned to Conditions

An important issue for any research method is how to select participants for the study. Psychologists typically want to know that their findings generalize to people beyond the individuals in the study. In studying the effects of cell phone use on driving skills,
WHAT TYPES OF STUDIES ARE USED IN PSYCHOLOGICAL RESEARCH?

you ultimately would not focus on the behavior of the specific participants. Instead, you would seek to discover general laws about human behavior. If your results generalized to all people, that would enable you, other psychologists, and the rest of humanity to predict, in general, how cell phone use would affect driving performance. Other results, depending on the nature of the study, might generalize to all college students, to students who belong to sororities and fraternities, to women, to men over the age of 45, and so on.

POPULATION AND SAMPLING The group you want to know about is the population (FIGURE 2.17). To learn about the population, you study a subset from it. That subset, the people you actually study, is the sample. Sampling is the process by which you select people from the population to be in the sample. In a case study, the sample size is one. The sample should represent the population, and the best method for making this happen is random sampling (FIGURE 2.18). This method gives each member of the population an equal chance of being chosen to participate. In addition, larger samples yield more-accurate results (FIGURE 2.19). However, sample size is often limited by resource constraints, such as time, money, and space in which to work.

Most of the time, a researcher will use a convenience sample (FIGURE 2.20). As the term implies, this sample consists of people who are conveniently available for the study. However, because a convenience sample does not use random sampling, the sample is likely to be biased. For instance, a sample of students at a small religious school may differ from a sample of students at a large state university. Researchers acknowledge the limitations of their samples when they present their findings.

RANDOM ASSIGNMENT Once researchers obtain a representative sample of the population, they use random assignment to assign participants to the experimental and control groups (FIGURE 2.21). Random assignment gives each potential research participant an equal chance of being assigned to any level of the independent variable.

For your study, there might be three levels: holding a cell phone, answering questions verbally over the phone, and answering questions by texting. First, you would gather participants by taking either a random sample or a convenience sample from
the population. Then, to randomly assign those participants, you might have them draw numbers from a hat to determine who is assigned to the control group (holding the phone) and to each experimental group (one talking and the other texting).

Of course, individual differences are bound to exist among participants. For example, any of your groups might include some people with less experience with cell phones and some people who talk or text a great deal, some people with excellent and experienced driving skills and some people with comparably weaker skills. But these differences will tend to average out when participants are assigned to either the control or experimental groups randomly, so that the groups are equivalent on average. Random assignment tends to balance out known and unknown factors, given a large enough sample size.

If random assignment to groups is not truly random, and groups are not equivalent because participants in different groups differ in unexpected ways, the condition is known as selection bias (also known as selection threat). Suppose you have two of the experimental conditions described earlier: a group assigned to hold the phone and a group assigned to respond to text messages. What happens if the group assigned to hold the phone includes many college students with lots of experience using cell phones and the other group includes many older adults who have minimal experience texting? How would you know if the people in the different conditions of the study are equivalent? You could match each group for age, sex, cell phone use habits, and so on, but you can never be sure that you have assessed all possible factors that may differ between the groups. Not using random assignment can create confounds that limit causal claims. (For a recap of the experimental method, see FIGURE 2.22.)

FIGURE 2.22
The Experimental Method in Action

An experiment examines how one variable changes as another is manipulated by the researcher. The results can demonstrate causal relationships between the variables.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Researcher manipulates...</td>
<td>Researcher randomly assigns participants to...</td>
<td>Researcher measures...</td>
<td>Researcher assesses result.</td>
<td>Conclusion</td>
</tr>
<tr>
<td>independent variable</td>
<td>control group or experimental group</td>
<td>dependent variable</td>
<td>Are the results in the control group different from the results in the experimental group?</td>
<td>The explanation either supports or does not support the hypothesis. Are there confounds, which would lead to alternative explanations?</td>
</tr>
</tbody>
</table>

FIGURE 2.23
Cross-Cultural Studies

(a) The living space and treasured possessions of a family in Japan, for example, differ from (b) those of a family in Mali. Cross-cultural researchers might study how either family would react to crowding or to the loss of its possessions.

GENERALIZING ACROSS CULTURES It is important for researchers to assess how well their results generalize to other samples, particularly in cross-cultural research (Henrich, Heine, & Norenzayan, 2010). One difficulty in comparing people from different cultures is that some ideas and practices do not translate easily across cultures, just as some words do not translate easily into other languages. Apparent differences between cultures may reflect such differences in language, or they may reflect participants’ relative willingness to report things about themselves publicly. A central challenge for cross-cultural researchers is to refine their measurements to rule out these kinds of alternative explanations (FIGURE 2.23).

Some psychological traits are the same across all cultures (e.g., care for the young). Others differ widely across cultures (e.g., behaviors expected of adolescents). Culturally sensitive research takes into account the significant role that culture plays in how people think, feel, and act (Adair & Kagithibasi, 1995; Zebian, Alamuddin, Mallouf, & Chatila, 2007). Scientists use culturally sensitive practices so that their...
research respects—and perhaps reflects—the “shared system of meaning” that each culture transmits from one generation to the next (Betancourt & Lopez, 1993, p. 630).

In cities with diverse populations, such as Toronto, London, and Los Angeles, cultural differences exist among different groups of people living in the same neighborhoods and having close daily contact. Researchers therefore need to be sensitive to cultural differences even when they are studying people in the same neighborhood or the same school. Researchers must also guard against applying a psychological concept from one culture to another without considering whether the concept is the same in both cultures. For example, Japanese children’s attachment to their parents looks quite different from the attachment styles common among North American children (Miyake, 1993).

How does random assignment help deal with existing differences between participants?

What Are the Ethics Governing Psychological Research?

Psychologists want to know why and how we act, think, feel, and perceive the way we do. In other words, they want to understand the human condition. When conducting research, psychologists have a responsibility to carefully consider the ethics of their own actions. Will the study contribute to the betterment of humanity? What exactly will the participants be asked to do? Are the requests reasonable, or will they put the participants in danger of physical or emotional harm over the short term or the long term? If animals are involved, will they be treated humanely? Is their use justified?

There Are Ethical Issues to Consider in Research with Human Participants

It makes sense for psychological studies to involve human participants. As in any science that studies human behavior, however, there are limits to how researchers can manipulate what people do in studies. For ethical and practical reasons, researchers cannot always use the experimental method.

Consider the question of whether smoking causes cancer. To explain why a phenomenon (e.g., cancer) occurs, experimenters must control the conditions under which that phenomenon occurs. And to establish that a cause-and-effect relationship exists between variables, experimenters need to use random assignment. So to determine causality between smoking and cancer, some study participants would have to be randomly “forced” to smoke a controlled number of cigarettes in a specific fashion for a controlled amount of time, while an equal number of different (but similar) participants would have to be randomly “prevented” from smoking for the same amount of time. However, ethics prevent researchers from randomly forcing people to smoke, so researchers cannot experimentally answer this question using human participants (FIGURE 2.24).

Learning Objectives

- Identify ethical issues associated with conducting psychological research on human participants.
- Apply ethical principles to conducting research on animals, identifying the key issues regarding the humane treatment of animal subjects.

FIGURE 2.24
Research on Smoking and Cancer
Researchers can compare (a) a nonsmoker’s lungs with (b) a smoker’s lungs. They can compare the rates of cancer in nonsmokers with the rates of cancer in smokers. Ethically, however, they cannot perform an experiment that entails randomly forcing study participants to smoke, even though such experiments could help establish a link between smoking and cancer.
INSTITUTIONAL REVIEW BOARDS (IRBs) To ensure the health and well-being of all study participants, strict guidelines exist regarding research. These guidelines are shared by all places where research is conducted, including colleges, universities, and research institutes. Institutional review boards (IRBs) are the guardians of the guidelines.

Convened at schools and other institutions where research is done, IRBs consist of administrators, legal advisers, trained scholars, and members of the community. At least one member of the IRB must not be a scientist. The purpose of the IRB is to review all proposed research to ensure that it meets scientific and ethical standards to protect the safety and welfare of participants. Most scientific journals today ask for proof of IRB approval before publishing research results. Three key issues are addressed in the IRB approval process: privacy, relative risks, and informed consent.

PRIVACY One major ethical concern about research is the expectation of privacy. Two main aspects of privacy must be considered. One aspect is confidentiality. This term means that personal, identifying information about participants absolutely cannot be shared with others. Research participants must be assured that any such information collected in a study will remain private. In some studies, anonymity is used. Although this term is often confused with confidentiality, anonymity means that the researchers do not collect personal, identifying information. Without such information, responses can never be traced to any individual. Anonymity helps make participants comfortable enough to respond honestly.

RELATIVE RISKS OF PARTICIPATION Another ethical issue is the relative risk to participants’ mental or physical health. Researchers must always remain aware of what they are asking of participants. They cannot ask people to endure unreasonable amounts of pain or of discomfort, either from stimuli or from the manner in which data measurements are taken.

Fortunately, in the vast majority of studies being conducted, these types of concerns are not an issue. However, even though risk may be low, researchers still have to think carefully about the potential for risk. Therefore, the IRB will evaluate the relative trade-off between risk and benefit for any research study it approves. In some cases, the potential gains from the research may require asking participants to expose themselves to some risk to obtain important findings. The risk/benefit ratio is an analysis of whether the research is important enough to warrant placing participants at risk. If a study has any risk associated with it, then participants must be notified before they agree to participate. This process is known as informed consent.

INFORMED CONSENT Research involving human participants is a partnership based on mutual respect and trust. People who volunteer for psychological research have the right to know what will happen to them during the course of the study. Compensating people with either money or course credit for their participation in research does not alter this fundamental right. Ethical standards require giving people all relevant information that might affect their willingness to become participants (FIGURE 2.25).

Informed consent means that participants make a knowledgeable decision to participate. Typically, researchers obtain informed consent in writing (FIGURE 2.26). It is not always possible to inform participants fully about a study’s details. If knowing...
the study’s specific goals may alter the participants’ behavior, thereby rendering the results meaningless, researchers may need to use deception. That is, they might mislead the participants about the study’s goals or not fully reveal what will take place. Researchers use deception only when other methods are not appropriate and when the deception does not involve situations that would strongly affect people’s willingness to participate. If deception is used, a careful debriefing must take place after the study’s completion. Here, the researchers inform the participants of the study’s goals. They also explain the need for deception, to eliminate or counteract any negative effects produced by the deception.

What is the purpose of informed consent?

2.11 There Are Ethical Issues to Consider in Research with Animals

Many people have ethical concerns about research with nonhuman animals. These concerns involve two questions: Does research threaten the health and well-being of the animals? And is it fair to the animals to study them to improve the human condition?

HEALTH AND WELL-BEING Research with animals must always be conducted with regard to the health and well-being of the animals. Federal mandates govern the care and use of animals in research, and these mandates are strictly enforced. An accounting and reporting system is in place for all institutions conducting animal research. Violators of the mandates are prevented from conducting further research.

All colleges, universities, and research institutions conducting research with vertebrate animals must have an Institutional Animal Care and Use Committee (IACUC). This committee is like an institutional review board (discussed earlier), but it evaluates animal research proposals. In addition to scientists and nonscientists, every IACUC includes a certified doctor of veterinary medicine, who must review each proposal to ensure that the research animals will be treated properly before, during, and after the study.

FAIRNESS Animals share similarities with humans that make them good “models” for particular human behaviors or conditions. For example, as you will learn more about in Chapters 3 and 7, the human brain has a region called the hippocampus, and people with damage to this region suffer from memory loss. It would be unethical for researchers to reproduce hippocampal damage in people in an effort to find treatments for their memory loss. However, many animals also have a hippocampus, and they display similar types of memory loss when this region is damaged. As a way to help humans, researchers thus may find it necessary to conduct animal research. For example, scientists can damage or temporarily “turn off” the hippocampus in rats or mice to test treatments that may help to reverse the resulting memory loss.
CHAPTER 2 RESEARCH METHODOLOGY

Another valuable animal model is the transgenic mouse. Transgenic mice have been produced by manipulating genes in developing mouse embryos—for example, by inserting strands of foreign DNA into the genes. Studying the behavior of mice with specific genetic changes enables scientists to discover the role that genes play in behavior and disease (FIGURE 2.27).

Are such treatments fair to the research animals? Scientists must balance their concern for individual animals’ lives with their concern for humanity’s future. The pursuit of scientific knowledge and medical advances is important for identifying causes and treatments for many disorders as well as better understanding the link between brain and behavior. At the same time, animals must be used respectfully in research. Such respect involves making sure that the research methods are sound and that the inclusion of animals is justified by the relative importance of the information that will be obtained by their use.

FIGURE 2.27
Animal Research
Researchers observe the behaviors of transgenic mice to understand how certain genes affect behavior.

Q Why are animals used in research?

ANSWER: They may provide valuable information that cannot be ethically obtained by studying humans.

USING PSYCHOLOGY IN YOUR LIFE

2.12 Should You Participate in Psychological Research?

Someday, perhaps even this term, you will be invited to participate in a psychological research study (FIGURE 2.28). Because psychological researchers are a creative lot, they enjoy figuring out clever ways to study the human mind. As a result, participation in research can be a lot of fun. Even studies that simply involve answering self-report questions offer opportunities to reflect on your inner world and behaviors. However, some students in introductory psychology may worry that researchers will trick them into doing something they do not want to do. Others may feel anxious because they have no idea what to expect once they walk through the doors of a psychology laboratory. Understanding the ethical principles that guide psychological research arms potential research participants—like yourself—with insight about what to expect when participating in a study.

Psychologists in the United States conduct their studies according to a set of ethical principles, a few of which are described below.

First, no one can force you to participate in a study. Although many psychology departments “require” students to participate in research as part of their course work, they offer students alternatives for fulfilling this requirement. For example, in some departments, students can read and write about articles published in journals in lieu of participating in research. Even if you volunteer for a study, you have the right to discontinue your participation at any time, for any reason, and without penalty. And you can skip any questions you do not care to answer, perhaps because you find them intrusive or offensive. You are in the driver’s seat when it comes to choosing if, and to what extent, you would like to participate in a study.

Second, you are legally and ethically entitled to know what you are getting into so you can make an informed decision about participating. Although the researchers will not be able to reveal their exact research questions and hypotheses, they will be able to tell you the general purpose of the study and the kinds of activities you will be asked to complete. You might be asked to answer questions, perform computer tasks, engage in moderate physical activity, navigate a real or imagined social scenario, rate the appeal of different consumer products, and so on. In addition, researchers must
tell you about the risks and potential benefits faced by participants. For example, researchers studying ostracism would inform participants they might find the experimental tasks distressing. So even before a study begins, you will actually know a good deal about the research.

Third, after you complete the study, you can expect the researchers to debrief you. During the debriefing, the researchers will tell you if they used deception in the study. For example, if you participate in a study about cooperation, you might learn during the debriefing that the “person” you interacted with online was really a computer program.

Finally, you can expect that the data you provide will remain confidential. To protect confidentiality, the researchers will remove all identifying information, such as your name, from any data you submit. They will store consent forms separately from data, password-protect electronic files containing sensitive information, and keep all files in a secure location.

While researchers are governed by formal ethical guidelines (in addition to their own moral compasses), good study participants also engage the research process respectfully. When you sign up to participate in a study, record the researcher’s contact information in case an emergency arises and you are unable to fulfill your commitment. Arrive at your session on time, and bring any paperwork your institution might require in order for you to receive class credit for your participation. During the study, minimize potential distractions, such as by turning off your cell phone. And, importantly, ask questions! One of the benefits of volunteering in research is learning firsthand about the research process. Getting answers to your questions helps you derive this benefit.

Study participants are essential to the research enterprise. The principles and procedures described here emerged out of concern for the well-being of participants. Understanding your rights and responsibilities prepares you to contribute meaningfully and confidently, without fear of trickery or unknown risks, to psychologists’ efforts to understand and improve the human condition. On behalf of psychologists everywhere, thank you for joining us in this endeavor.

What is debriefing?

How Are Data Analyzed and Evaluated?

So far, this chapter has presented the essential elements of scientific inquiry in psychology: thinking critically; asking an empirical question using theories, hypotheses, and research; deciding what type of study to run; considering the ethics of particular research; collecting and presenting data. This section focuses on the data. Specifically, it examines the characteristics that make for good data and the statistical procedures that researchers use to analyze data.

2.13 Good Research Requires Valid, Reliable, and Accurate Data

If you collect data to answer a research question, the data must be **valid**. That is, the data must be accurate measurements of the constructs (concepts) that you think they measure, accurately represent phenomena that occur outside of the laboratory, and accurately reveal effects due specifically and only to manipulation of the independent variable.
Construct validity is the extent to which variables measure what they are supposed to measure. For example, suppose at the end of the semester your psychology professor gives you a final examination that consists of chemistry problems. This kind of final examination would lack construct validity—it would not accurately measure your knowledge of psychology (FIGURE 2.29).

Now imagine you are a psychological researcher. You hypothesize that “A students” spend more time studying than “C students.” To test your hypothesis, you assess the amount of time students spend studying. However, what if “C students” tended to do other things—such as sleeping, playing video games, or checking their Facebook status—while they claimed to be studying? If this were the case, the data would not accurately reflect studying and would therefore lack construct validity.

External validity is the degree to which the findings of a study can be generalized to other people, settings, or situations. A study is externally valid if (1) the participants accurately represent the intended population, and (2) the variables were manipulated and measured in ways similar to how they occur in the “real world.”

Internal validity is the degree to which the effects observed in an experiment are due to the independent variable and not to confounds. For data to be internally valid, the experiment must be well designed and well controlled. That is, all the participants must be as similar as possible, and there must be a control group. Only by comparing experimental groups to control groups can you determine that any changes observed in the experimental groups are caused by the independent variable and not something else (for example, practice or the passage of time).

To understand internal validity, suppose you are conducting a study to see if special tutoring causes better grades. You randomly sample 50 students from introductory psychology classes at your university and give them special tutoring for 6 weeks. At the end of the 6 weeks, you find that the students earned an average score of 82.5 percent on the final exam (FIGURE 2.30). Can you conclude that the tutoring caused the grade? Wait a minute. How do you know if 82.5 is an improvement over scores typically received on the exam? Maybe all students in introductory psychology “mature” over the semester so that the average final exam grade is about 82, regardless of tutoring. Or perhaps having 6 weeks of practice taking other tests results in higher exam grades, even without tutoring. Only by having an equal comparison group—a control group of students that is otherwise identical to the experimental group except for the treatment—can you determine if your treatment caused the observed effect.

Indeed, a better way to conduct this study would be to sample 50 students from the class, randomly assign 25 of them the special tutoring for 6 weeks (the experimental group), and not give any special treatment to the other 25 (the control group). Say the 25 students in the experimental group average 82.5 percent on the final exam and the 25 students in the control group average 74.2 percent (FIGURE 2.31). The control group was similar in every way to the experimental group. As a result, you are fairly safe to conclude that the tutoring—not something else—led to higher exam grades. Thus, having a true control group can ensure that a study maintains internal validity.

Another important aspect of data is reliability, the stability and consistency of a measure over time. If the measurement is reliable, the data collected will not vary substantially over time. For instance, one option for measuring the duration of studying would be to have an observer use a stopwatch. There is likely to be some variability, however, in when the observer starts and stops the watch relative to when the
HOW ARE DATA ANALYZED AND EVALUATED?

student actually starts studying. As a consequence, the data in this scenario would be less reliable than data collected by an online homework system that measured how much time students spent working on assignments.

The third and final characteristic of good data is **accuracy**, the degree to which the measure is error free. A measure may be reliable but still not be accurate. Psychologists think about this problem by turning it on its head and asking, How do errors creep into a measure?

Suppose you use a stopwatch to measure the duration of studying. The problem with this method is that each measurement will tend to overestimate or underestimate the true duration. This is because a stopwatch is not perfect and will introduce error into the measurement.

FIGURE 2.31

A Study with Internal Validity

In this better study, you divide the sample into an experimental group and a control group. Only the experimental group receives the treatment. You can then compare the results with the results from the control group.

Student actually starts studying. As a consequence, the data in this scenario would be less reliable than data collected by an online homework system that measured how much time students spent working on assignments.

The third and final characteristic of good data is **construct validity**, the degree to which variables measure what they are supposed to measure.

external validity

The degree to which the findings of a study can be generalized to other people, settings, or situations.

internal validity

The degree to which the effects observed in an experiment are due to the independent variable and not to confounds.

reliability

The degree to which a measure is stable and consistent over time.

accuracy

The degree to which an experimental measure is free from error.
underestimate the duration (because of human error or variability in recording
times). This type of problem is known as a random error or unsystematic error.
Although an error is introduced into each measurement, the value of the error differs
each time (FIGURE 2.32). But suppose the stopwatch has a glitch, so that it always
overstates the time measured by 1 minute. This type of problem is known as a system-
etic error or bias, because the amount of error introduced into each measurement
is constant (FIGURE 2.33). Generally, systematic error is more problematic than ran-
dom error because the latter tends to average out over time and therefore is less likely
to produce inaccurate results.

You want to know whether the results of your study generalize to
other groups. What kind of validity are you most concerned about?

2.14 Descriptive Statistics Provide
a Summary of the Data

The first step in evaluating data is to inspect the raw values. This term refers to data
that are as close as possible to the form in which they were collected. In examining raw
data, researchers look for errors in data recording. For instance, they assess whether
any of the responses seem especially unlikely (e.g., studying for 72 hours or a 113-year-
old participant). Once the researchers are satisfied that the data make sense, they
summarize the basic patterns using descriptive statistics. These mathematical forms
provide an overall summary of the study’s results. For example, they might show how
the participants, on average, performed in one condition compared with another.

The simplest descriptive statistics are measures of central tendency. This single
value describes a typical response or the behavior of the group as a whole. The most
intuitive measure of central tendency is the mean, the arithmetic average of a set of
numbers. The class average on an exam is an example of a mean score. Consider our
earlier hypothetical study of cell phone use and driving performance. A basic way to
summarize the data would be to calculate the means for driving performances using
descriptive statistics. These mathematical forms provide an overall summary of the study’s results. For example, they might show how
the participants, on average, performed in one condition compared with another.

The simplest descriptive statistics are measures of central tendency. This single
value describes a typical response or the behavior of the group as a whole. The most
intuitive measure of central tendency is the mean, the arithmetic average of a set of
numbers. The class average on an exam is an example of a mean score. Consider our
earlier hypothetical study of cell phone use and driving performance. A basic way to
summarize the data would be to calculate the means for driving performances using
number of seconds the participants took to travel once around a virtual racetrack in a
driving simulator. You would calculate one mean for when participants were simply
holding a cell phone and a second mean for when they were texting. If texting affects
driving, you would expect to see a difference in the means between those holding cell phones and those using them.

A second measure of central tendency is the **median**, the value in a set of numbers that falls exactly halfway between the lowest and highest values. For instance, if you received the median score on a test, half the people who took the test scored lower than you and half the people scored higher.

Sometimes researchers will summarize data using a median instead of a mean because if one or two numbers in the set are dramatically larger or smaller than all the others, the mean will give either an inflated or a deflated summary of the average. This effect occurs in studies of average incomes. Perhaps approximately 50 percent of Americans make more than $52,000 per year, but a small percentage of people make so much more (multiple millions or billions for the richest) that the mean income is much higher (around $70,000) than the median and is not an accurate measure of what most people earn. The median provides a better estimate of how much money the average person makes.

A third measure of central tendency is the **mode**, the most frequent score or value in a set of numbers. For instance, the modal number of children in an American family is two, which means that more American families have two children than any other number of children. (For examples of how to calculate all three central tendency measures, see FIGURE 2.34.)

FIGURE 2.34
Descriptive Statistics

Descriptive statistics are used to summarize a data set and to measure the central tendency and variability in a set of numbers. The mean, median, and mode are different measures of central tendency. The range is a measure of variability.
In addition to measures of central tendency, another important characteristic of data is the variability in a set of numbers. In many respects, the mean is meaningless without knowing the variability. Variability refers to how widely dispersed the values are from each other and from the mean. The most common measure of variability—how spread out the scores are—is the standard deviation. This measure reflects how far away each value is, on average, from the mean. For instance, if the mean score for an exam is 75 percent and the standard deviation is 5, most people scored between 70 percent and 80 percent. If the mean remains the same but the standard deviation becomes 15, most people scored between 60 and 90—a much larger spread.

Another measure of how spread out scores are is the range, the distance between the largest value and the smallest value. Often the range is not very useful, however, because it is based on only those two scores.

Why might you prefer the median to the mean?

2.15 The Correlation Coefficient Summarizes the Relationships Between Variables

The descriptive statistics discussed so far are used for summarizing the central tendency and variability in a set of numbers. Descriptive statistics can also be used to summarize how two variables relate to each other. Recall from Section 2.7 that correlational designs are used to study how two variables relate to one another.

In analyzing the relationship between two variables, researchers can compute a correlation coefficient. This descriptive statistic provides a numerical value (between −1.0 and +1.0) that indicates the strength and direction of the relationship between the two variables. Some sample scatterplots and their corresponding correlation coefficients can be seen in [FIGURE 2.35](#).

FIGURE 2.35 Correlation Coefficient

Correlations can have different values between −1.0 and +1.0. These values reveal the strength and direction of relationships between two variables. The greater the scatter of values, the lower the correlation. A perfect correlation occurs when all the values fall on a straight line.
Here, we are considering only one type of relationship: a linear relationship. In a linear relationship, an increase or decrease in one variable is associated with an increase or decrease in the other variable. When a linear relationship is strong, knowing how people measure on one variable enables you to predict how they will measure on the other variable. The two types of linear relationship, as discussed in Section 2.7, are positive correlations and negative correlations.

If two variables have a positive correlation, they increase or decrease together. For example, the more people study, the more likely they are to have a higher GPA. A perfect positive correlation is indicated by a value of +1.0 (see Figure 2.35e). If two variables have a negative correlation, as one increases in value, the other decreases in value. For example, as people spend more time multitasking, they become less able to study for their exams, so multitasking and GPA have a negative correlation. A perfect negative correlation is indicated by a value of −1.0 (see Figure 2.35a). If two variables show no apparent relationship, the value of the correlation will be a number close to zero (assuming a linear relationship for the purposes of this discussion; see Figure 2.35c).

Q If two variables are completely unrelated to each other, what would be the correlation coefficient?

ANSWER:

2.16 Inferential Statistics Permit Generalizations

Researchers use descriptive statistics to summarize data sets. They use inferential statistics to determine whether effects are probably due to chance or whether they reflect true differences in the groups being compared. For instance, suppose you find that the mean driving performance for drivers using cell phones is lower than the mean driving performance for those not using cell phones. How different do these means need to be for you to conclude that using a cell phone reduces people’s ability to drive?

A review of 206 studies found that the skills necessary to drive a car can become impaired when people perform a second task (i.e., multitask; Ferdinand & Menachemi, 2014). Pretend for a moment, however, that cell phone use does not influence driving performance. If you measure the driving performances of those using cell phones and those not using them, just by chance there will be some variability in the mean performance of the two groups. The key is that if cell phone use does not affect driving performance, the probability of showing a large difference between the two means is relatively small. Researchers use statistical techniques to determine if the differences among the sample means are (probably) chance variations or if they reflect actual differences in the populations.

Consider Figure 2.36. This bar graph shows the means for a study that compared driving in a simulator while either texting or not texting. The mean is visibly higher for the texting group, but is this difference larger than would be expected by chance? The error bars for each group show the variability that was observed within each group during the study. The difference between the means is much larger than the observed variability within each group. Thus, this difference between the groups does not appear to have happened by chance. It appears to be a real difference.

inferenceal statistics

A set of procedures that enable researchers to decide whether differences between two or more groups are probably just chance variations or whether they reflect true differences in the populations being compared.
The difference between the means is larger than the observed variability within each group.

Each error bar indicates the variability within the group.

FIGURE 2.36
Evaluating Differences in Research Results
In this hypothetical experiment comparing two groups in a driving simulator, the group assigned to the texting condition had significantly more accidents. That result is reflected in the difference between the means for the groups. Error bars have been added to show the variability of data within each condition.

When the results obtained from a study would be very unlikely to occur if there really were no differences between the groups of subjects, the researchers conclude that the results are statistically significant. According to generally accepted standards, researchers typically conclude there is a significant effect only if the obtained results would occur by chance less than 5 percent of the time.

META-ANALYSIS
Meta-analysis is a type of study that, as its name implies, is an analysis of multiple analyses. In other words, it is a study of studies that have already been conducted. With meta-analysis, many studies that have addressed the same issue are combined and summarized in one “study of studies.” The study we described that looked at 206 studies is an example of a meta-analysis.

Suppose that ten studies have been conducted on men’s and women’s effectiveness as leaders. Among these ten studies, five found no differences, two favored women, and three favored men. Researchers conducting a meta-analysis would not just count up the numbers of different findings from the research literature. Instead, they would weight more heavily those studies that had larger samples. Large samples are more likely to provide more accurate reflections of what is true in populations (see Figure 2.19). The researchers would also consider the size of each effect. That is, they would factor in whether each study found a large difference, a small difference, or no difference between the groups being compared—in this case, between women and men. (The researchers who conducted such a meta-analysis on men’s and women’s effectiveness found no overall differences; Eagly, Karau, & Makhijani, 1995.)

Because meta-analysis combines the results of separate studies, many researchers believe that meta-analysis provides stronger evidence than the results of any single study. As discussed earlier in this chapter, we can be more confident about results when the research findings are replicated. Meta-analysis has the concept of replication built into it.

What does it mean if an observed difference between groups is described as statistically significant?

ANSWER: The observed difference is unlikely to have occurred by chance—something caused it.

Meta-analysis
A “study of studies” that combines the findings of multiple studies to arrive at a conclusion.
In 2013, LeBron James, then playing for the Miami Heat, set a basketball record by scoring over 30 points, while making over 60 percent of his shots, for six straight games (Fig. 2.37). In the seventh game, James's streak ended, when he scored on just under 60 percent of his shots.

Did James have a “hot hand” during this streak? Are there periods when particular athletes are relaxed, confident, and “in the zone” and play particularly well? Team members try to get the ball to a person who has made several shots in a row, because they think the person’s hot hand will increase their chance of winning. Many sports journalists, coaches, athletes, and fans believe in some form of the phenomenon.

The psychologist Tom Gilovich and his colleagues (1985) conducted a series of studies on the hot hand, to assemble beliefs about the phenomenon and to scientifically examine whether it exists. Their first and crucial step was to turn the idea of the hot hand into a testable hypothesis: After a basketball shooter has made two or three shots in a row, that shooter will be more likely to make the next shot than after missing the last two or three shots. When the researchers asked 100 knowledgeable basketball fans, 91 agreed that this outcome was likely. If their belief were accurate, then an analysis of shooting records should show the increased probability of making a shot after previous successes than after previous failures.

To test whether the “hot hand” hypothesis is supported by evidence, Gilovich and colleagues examined the shooting records of the Philadelphia 76ers during the 1980–81 season. The 76ers kept records of the order that shots had been taken as well as the outcome of those shots. The data did not support the hot hand hypothesis. Players made on average 51 percent of their shots after making one previous shot, 50 percent after making two previous shots, and 46 percent after making three in a row. If anything, players were more likely to be successful after prior misses: 51 percent after one prior miss, 53 percent after two prior misses, and 56 percent after missing three in a row.

As a critical thinker, you might wonder whether the defensive team stops the streak by paying more attention to hot shooters and putting in more effort to defend against them. To test this alternative explanation, Gilovich and colleagues examined free throw shooting, where the defense does not matter and players get two free shots. Players made about the same number of second free throws whether they made the first one or not.

Upon hearing the results of this research, the famous coach Red Auerbach, of the Boston Celtics, exclaimed, “Who is this guy? So he makes a study. I couldn’t care less” (Gilovich, 1991, p. 17). Should anyone care? After all, the results of any one study might be questionable until other scientists have replicated the findings. And as it turns out, the occasional study supports the idea of the hot hand for some sports, such as volleyball (Raab, Gula, & Gigerenzer, 2012) and baseball (Green & Zwiebel, 2017). Why there might be a hot hand in some sports but not others is open to speculation. However, a meta-analysis of 22 published articles on this phenomenon found no evidence that the hot hand exists (Avugos, Köppen, Czienskowski, Raab, & Bar-Eli, 2013). Some researchers have suggested that the very statistics used to assess the hot hand might be mistaken (Miller & Sanjurjo, 2016). There continues to be a lively debate as to the best ways to measure streakiness in shooting and whether there is a hot hand. The psychologist Alan Reifman maintains an active blog on the topic at thehothand.blogspot.com.

Regardless of the scientific controversy, casual observers tend to overrate the occurrence of the hot hand. Why do people have such strong beliefs about shooting...
streaks? The best answer is that people are bad at recognizing chance outcomes. If a fair coin is flipped, most people intuitively expect there to be a greater alternation of heads and tails than occurs by chance. But if you flip a coin 20 times in a row, there will be streaks of six heads or tails in a row 10 percent of the time, five in a row 25 percent of the time, and four in a row 50 percent of the time. Players do occasionally sink the shot six, seven, or eight times in a row, but these occurrences do not happen any more often than what we expect from chance, given the number of shots they take in a game. ■

Q Why do people believe in shooting streaks?

ANSWER: People are bad at recognizing chance outcomes.
Your Chapter Review

Chapter Summary

How Is the Scientific Method Used in Psychological Research?

2.1 Science Has Four Primary Goals
The four primary goals of science are description (describing what a phenomenon is), prediction (predicting when a phenomenon might occur), control (controlling the conditions under which a phenomenon occurs), and explanation (explaining what causes a phenomenon to occur).

2.2 The Scientific Method Tests Hypotheses
Scientific inquiry relies on objective methods and empirical evidence to answer testable questions. The scientific method is based on the use of theories to generate hypotheses that can be tested by collecting objective data through research. After a theory has been formulated based on observing a phenomenon, the seven steps of the scientific method are framing research questions, reviewing the scientific literature to see if and/or how people are testing the theory, forming a hypothesis based on the theory, choosing a research method to test the hypothesis, conducting the research study, analyzing the data, and disseminating the results.

2.3 The Scientific Method Is Cyclical
The data from scientific studies either support and strengthen a theory or require reconsidering or revising the theory. Replication involves repeating a study to see if the same results occur. Replication is increasingly important in psychology. Researchers may refine theories to make them more precise.

2.4 Evaluating Scientific Findings Requires Critical Thinking
Critical thinking is a skill that helps people become educated consumers of information. Critical thinkers question claims, seek definitions for the parts of the claims, and evaluate the claims by looking for well-supported evidence.

What Types of Studies Are Used in Psychological Research?

2.5 Descriptive Research Consists of Case Studies, Observation, and Self-Report Methods
A case study, one kind of descriptive study, examines an unusual individual or an organization. However, the findings of a case study may not generalize. Researchers observe and describe naturally occurring behaviors to provide a systematic and objective analysis. Data collected by observation must be defined clearly and collected systematically. Surveys, questionnaires, and interviews can be used to directly ask people about their thoughts and behaviors.

2.6 Descriptive Studies Need to Guard Against Bias
Self-report data may be biased by the respondents’ desire to present themselves in a particular way (e.g., smart, honest, or both). Bias may also occur in the data because the participants are aware that they are being observed or because of the observer’s expectations.

2.7 Correlational Studies Describe and Predict How Variables Are Related
Correlational studies are used to examine how variables are naturally related in the real world. These studies cannot be used to establish causality or the direction of a relationship (i.e., which variable caused changes in the other variable).

2.8 The Experimental Method Controls and Explains
An experiment can demonstrate a causal relationship between variables. Experimenters manipulate one variable, the independent variable, to determine its effect on another, the dependent variable. Research participants are divided into experimental groups and control groups. The experimental groups experience the independent variable, and the control groups are used for comparison. In evaluating the data, researchers must look for confounds—elements, other than the variables, that may have affected the results.

2.9 Participants Need to Be Carefully Selected and Randomly Assigned to Conditions
Researchers sample participants from the population they want to study (e.g., drivers). They use random sampling when everyone in the population is equally likely to participate in the study, a condition that rarely occurs. To establish causality between an intervention and an outcome, random assignment must be used. When random assignment is used, all participants have an equal chance of being assigned to any level of the independent variable, and preexisting differences between the groups are controlled. Culturally sensitive research recognizes the differences among people from different cultural groups and from different language backgrounds.

What Are the Ethics Governing Psychological Research?

2.10 There Are Ethical Issues to Consider in Research with Human Participants
Ethical research is governed by principles that ensure fair, safe, and informed treatment of participants. Institutional review boards (IRBs) judge study proposals to make sure the studies will be ethically sound.

2.11 There Are Ethical Issues to Consider in Research with Animals
Research involving nonhuman animals provides useful, although simpler, models of behavior and of genetics. The purpose of such research may be to learn about animals’ behavior or to make inferences about human behavior. Institutional Animal Care and Use Committee
(IACUC) judges study proposals to make sure the animals will be treated properly. Researchers must weigh their concerns for individual animals against their concerns for humanity’s future.

2.12 Using Psychology in Your Life: Should You Participate in Psychological Research?
Study participants are essential to the research enterprise and must be treated ethically. Students often enjoy participating in psychological studies.

How Are Data Analyzed and Evaluated?

2.13 Good Research Requires Valid, Reliable, and Accurate Data
Data must be meaningful (valid) and their measurement reliable (i.e., consistent and stable) and accurate.

2.14 Descriptive Statistics Provide a Summary of the Data
Measures of central tendency (mean, median, and mode) and variability are used to describe data.

2.15 The Correlation Coefficient Summarizes the Relationships Between Variables
A correlation coefficient is a descriptive statistic that describes the strength and direction of the relationship between two variables. Correlations close to zero signify weak relationships. Correlations near +1.0 or −1.0 signify strong relationships.

2.16 Inferential Statistics Permit Generalizations
Inferential statistics enable us to decide whether differences between two or more groups are probably just chance variations (suggesting that the populations the groups were drawn from are the same) or whether they reflect true differences in the populations being compared. Meta-analysis combines the results of several studies to arrive at a conclusion.

2.17 Think Like a Psychologist: Should You Bet on a Hot Hand?
Although athletes have streaks of better than typical performance, such unusual patterns are not greater than would be expected by chance. People generally are bad at recognizing chance outcomes.

Key Terms

accuracy, p. 57
case study, p. 39
central tendency, p. 58
confound, p. 48
construct validity, p. 56
control group, p. 47
correlation coefficient, p. 60
correlational studies, p. 43
culturally sensitive research, p. 50
data, p. 30
dependent variable, p. 47
descriptive research, p. 39
descriptive statistics, p. 58
directionality problem, p. 44
experiment, p. 46
experimental group, p. 47
experimenter expectancy effect, p. 42
external validity, p. 56
hypothesis, p. 31
independent variable, p. 46
inferential statistics, p. 61
institutional review boards (IRBs), p. 52
internal validity, p. 56
mean, p. 58
median, p. 59
meta-analysis, p. 62
mode, p. 59
naturalistic observation, p. 40
negative correlation, p. 44
ooberver bias, p. 42
oerational definition, p. 47
observer bias, p. 42
population, p. 49
positive correlation, p. 43
random assignment, p. 49
reactivity, p. 41
reliability, p. 56
replication, p. 35
research, p. 30
sample, p. 49
scatterplot, p. 43
scientific method, p. 30
selection bias, p. 50
sel-report methods, p. 40
standard deviation, p. 60
theory, p. 31
third variable problem, p. 45
variable, p. 38
zero correlation, p. 44
How Useful Are Data Science Skills?

As you have likely come to appreciate, designing a study, conducting it, and analyzing the results are the essence of psychological research. These skills are routinely used by research psychologists to describe, predict, explain, and control human behavior. The example used in this chapter is of researchers seeking to determine the impact of cell phone use on driving. Another example is of researchers evaluating which treatments for psychological disorders are most effective (as will be discussed in Chapter 15). Of course, asking and answering questions about human behavior is not limited to psychology research. It is also extremely useful elsewhere, such as in the workplace.

Consider how online retailers, such as Amazon, accurately predict which movies, books, or other items you will like. Or think about how a particular ad targeted to your interests pops up in your browser. Amazon, Google, and other technology companies can gather enormous amounts of information from our online behavior. By carefully analyzing those data, these businesses can determine correlations between our previous purchases, activities, and browsing history and those of other customers. They use that information to suggest new products we are likely to purchase or activities we might pursue. Google can experimentally determine which ad is more effective by randomly presenting a particular ad to some customers and a different ad to others, then comparing “click” rates.

As technology generates more and more data about individual behavior, fluency in research design and data analysis will increasingly be in demand. A 2017 study commissioned by the Business—Higher Education Forum (BHEF) and PricewaterhouseCoopers estimates that by 2020, there will be 2.72 million new openings for jobs in “data science,” which these organizations define as “the extraction of actionable knowledge directly from data through either a process of discovery, or hypothesis formulation and hypothesis testing.”

In other words, the skills needed for work in data science overlap with those identified by the American Psychological Association (APA) learning goals for psychology majors. The APA refers to these skills as research design, data analysis, and interpretation. You have been introduced to those concepts in this chapter. Psychology majors study them in more depth through required courses in research methods and statistics.

The data science skills learned by psychology majors can be applied to a wide variety of jobs beyond the Web. Think of a human resource manager eager to improve work performance, a hospital administrator determined to reduce the spread of infections, or a teacher interested in identifying and improving ways of evaluating learning. All of these workplace settings require the accurate understanding and treatment of data.

The bottom line: As a psychology student, you can develop analytical skills by using and interpreting data. These skills are in great demand in the workplace. Taking additional courses in research methods and statistics will strengthen data science skills and employability.