Parkinson’s: the search for a cure (video, episode two)
Parkinson’s disease is the fastest growing brain disease in the world. This is partially attributable to the ageing population, yet it is becoming apparent that other factors, such as agricultural pesticides, heavy metals, and solvents, may also play a role in this. The challenge for the future is to find a medicine, as none have yet been found. Thankfully, plenty of research is being conducted on the disease. Within the UG, too, various scientists are busy researching Parkinson’s disease.
In this series, we are highlighting a number of researchers who are researching topics including the emergence, cause, identification, and inhibition of the disease from their own different perspectives. All of these researchers find it important to contribute to better understanding, and eventually finding a cure for, this disease.
Joining us in the second episode of this series are Prof. Amalia Dolga, Associate Professor of Molecular Pharmacology, and Prof. Arjan Kortholt, Associate Professor of Cell Biochemistry. With Parkinson’s disease, brain cells that produce the neurotransmitter dopamine die off. But what causes this? There is evidence to suggest that the problems start in the immune system in the brain. Dolga and Kortholt believe that microglia, immune cells in the brain, could play a role here. They recently received a €250,000 grant from Stichting Parkinson Fonds (the Dutch Parkinson’s fund) to research what goes wrong with the microglia. One problem, however, is that it is nearly impossible to retrieve brain cells from patients. Amalia Dolga has recently developed a new technique to cultivate brain cells from stem cells.
Both labs are also jointly researching the protein LRRK2 because it plays a part in the symptoms of many patients. Kortholt studies the effects of a LRRK2 inhibitor. Most inhibitors that are currently available also affect other organs, such as the kidneys. That causes serious side-effects, making them unsuitable as medicine. Kortholt has discovered inhibitors that, instead of fully inhibiting LRRK2's activity, halve it. These inhibitors do not seem to have any side-effects, which is a hopeful development in the search for a cure.
Last modified: | 05 April 2023 12.01 p.m. |
More news
-
06 January 2025
Medical AI as a sparring partner
Andra Cristiana Minculescu studied how an AI-tool could collaborate with a team of medical experts. Today, her project was awarded the Impact Award of the Faculty of Science and Engineering at the University of Groningen.
-
06 January 2025
How a contrarian cracked rubber recycling
A small company in Grootegast produces bicycle baskets and slippers from recycled rubber. That is remarkable because, until recently, it was impossible to recycle rubber. However, Francesco Picchioni, Professor of Chemical Technology at the...
-
06 January 2025
Building top-notch telescopes to look into our past
RUG professor Scott Trager is developing new methods to unravel the evolution of stars in the Milky Way – and of galaxies far away. ‘There is a sense of wonder in looking out at the universe and thinking: how did this come to be? How does it all...