Skip to ContentSkip to Navigation
About usMedical SciencesResearchDepartment of Genetics
University Medical Center Groningen

Microbiome directly affects glucose metabolism, type 2 diabetes risk

26 March 2019

Publication in Nature Genetics by Serena Sanna, February 18th, 2019

The micro-organisms in our gut, the microbiome, have a profound effect on our health. However, even though dozens of new associations between gut bacteria and health are published each week, it is difficult to establish their causal relationship. Scientists from the University of Groningen Medical Centre, the University of Oxford and colleagues have now used a Mendelian Randomization approach to causally link gut microbiota with glucose metabolism. The results were published in Nature Genetics on 18 February 18th, 2019

Micro-organisms in our gut play an important role in the digestion of food and have been associated with a number of traits such as obesity. ‘But all studies on the microbiome only correlate certain bacterial species with a phenotype, like obesity. The causal link is not proven’, says Serena Sanna, assistant professor at the University of Groningen Medical Centre (UMCG). Sanna graduated in mathematics and is now working in the UMCG Department of Genetics in the group led by Prof Cisca Wijmenga.

The problem is that the microbiome can affect health, but health can also affect the microbiome. ‘And correlations can even turn out to be just statistical correlations’, says Sanna. That is why she is interested in finding a way to prove causal links between our gut bacteria and certain phenotypes. In the new study, she and her colleagues, including leaders in diabetes research Mark I. McCarthy, Natalie R. van Zuydam and Anubha Mahajan from the University of Oxford, show how changes in the microbiome can lead to increased insulin secretion after glucose challenge and also to an increased risk for Type 2 diabetes.

Sanna and her colleagues first analysed data on genetics and the microbiome in almost one thousand participants of the Dutch LifeLines DEEP cohort study. ‘We looked for microbiome features – bacterial species, or the function bacteria play in the gut – that associated with changes in glucose metabolism and obesity, risk factors for type 2 diabetes’, explains Sanna.

The next step was to determine cause and effect, which was done using a technique called Mendelian Randomization. The microbiome features could be directly responsible for the effects on glucose metabolism, or alternatively, impaired glucose metabolism could affect microbiome composition. To differentiate between these two hypotheses, the scientists first checked to see which genetic variants in the host would predict higher abundance of these microbiome features.

They then looked at participants in different European cohort studies (including the large UK Biobank study that has enrolled 500,000 participants) that have collected data on host genetics. Participants were grouped based on the genetic variants that predict each of these microbiome features, and Sanna and colleagues looked to see if there was any difference in the efficiency of glucose metabolism between groups.

Some of the microbiome features led to groups with different glucose metabolism. In contrast, when grouping Lifelines DEEP participants based on genetic variants associated to glucose metabolism parameters, no difference in microbiome features was seen between groups. So the microbiome features determined the risk, and not the other way around.

A feature that stood out was a microbiome pathway that leads to increased butyrate production in the gut. ‘This pathway was mainly represented by two bacterial species in the gut, Eubacterium rectale and Roseburia intestinalis, and individuals who were genetically predisposed to have higher abundance of it showed increased insulin secretion after glucose challenge and increased insulin secretion reduces the risk of diabetes’, says Sanna. Butyrate is a small chain fatty acid produced by bacterial fermentation of food. A number of previous studies have already pointed to butyrate as having anti-diabetic effects.

A second small chain fatty acid, propionate, was also correlated with diabetes risk: a higher concentration in the faeces meant a higher risk. ‘As these small chain fatty acids are usually beneficial, this probably means that in these cases, there is something going wrong with propionate absorption from the gut – so more ends up in the faeces, and less in the blood.’

The study shows that the analytical technique used by Sanna and her colleagues works: it was possible to prove a causal link between the composition of the microbiome (the number of butyrate-producing bacteria) and the risk for type 2 diabetes. ‘This means that we can now use our technique to study the cause and effect relationship for many other microbiome features and diseases.’

Contributing Institutes:

University of Groningen, University Medical Center Groningen, Departments: of Genetics, of Gastroenterology and Hepatology, and of Pediatrics, Groningen, the Netherlands

School for Nutrition, and Translational Research in Metabolism, Maastricht, the Netherlands

Radboud University Medical Center, Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Nijmegen, the Netherlands

Maastricht University Medical Center, Division Gastroenterology-Hepatology, NUTRIM

University of Oxford Institutes: Wellcome Centre for Human Genetics and Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK

Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK

University of Oslo, Department of Immunology, Norway

Full list of authors:

Serena Sanna, Natalie R. van Zuydam, Anubha Mahajan, Alexander Kurilshikov, Arnau Vich Vila, Urmo Võsa, Zlatan Mujagic, Ad A. M. Masclee, Daisy M.A.E. Jonkers, Marije Oosting, Leo A.B. Joosten, Mihai G. Netea, Lude Franke, Alexandra Zhernakova, Jingyuan Fu, Cisca Wijmenga, Mark I. McCarthy


DOI: 10.1038/s41588-019-0350-x  

Read the article in Nature Genetics

Last modified:26 March 2019 1.17 p.m.
printView this page in: Nederlands

More news

  • 22 October 2019

    No arguing: it’s time to relax

    Thanks to the smartphone, these days we keep our work on the kitchen table or bedside table. The boundary between work and private life is steadily fading. This is a cause for concern, says Jessica de Bloom, who thinks that we should be using our leisure...

  • 11 October 2019

    Down Under with Top Dutch (update)

    After two years of hard work, the Groningen Top Dutch Solar Racing team has arrived in Australia. The team consists of students of the Hanze University of Applied Sciences, University of Groningen, and secondary vocational education (MBO) and is currently...

  • 08 October 2019

    Making a splash in whale research

    He disliked genetics as an undergraduate and never really wanted to work with whales. Yet, Per Palsbøll became a worldwide expert in the genetics of marine mammals, heading a research programme spanning the entire globe. Introducing the concept of...