Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinXScience Linx News

Tuning chemistry with light

02 April 2015

University of Groningen scientists have made a catalyst with a light-operated switch. This allows them to use an external stimulus to change the end product of the catalyzed reaction. The proof of principle, which was published in Nature Communications on 24 March, could be used in a wide range of systems.

Ben Feringa
Ben Feringa

The scientists, led by Professor of Organic Chemistry Ben Feringa, fitted a metal-containing organic catalyst with a light-driven molecular motor. The catalyst they worked on has a metal core (Palladium) and bisphosphine ligands. The shape of the ligands determines the end product of the catalyzed process. The process can result in two chiral structures, mirror images of each other. Chirality is very important, especially in the pharmaceutical industry. Scientists are therefore working hard to gain control of the chiral structure.

‘We made a bisphosphine ligand in which we inserted a light-driven molecular motor’, Feringa explains. The light can switch the ligand and thereby change the chirality of the end product of the catalyst. It is not the first switchable catalyst his group has made: in March 2011 he published the design of a motor-driven catalyst in Science. ‘But that was a type of catalyst that isn’t used as much as the organometallic compounds.’

The new paper is an important proof of principle: ‘These types of catalysts are widely used in industry, so being able to control them with just an external stimulus is important.’ It may lead to the design of all sorts of new catalysts that can produce different end products in a controlled fashion. ‘In fact, we can already switch the catalyst to three different positions.’ But it will take some effort to come up with new, switchable catalysts. ‘You often can’t predict how exactly a modified catalyst will work. So the design is still part science, part art.’

.
.

Reference: Depeng Zhao, Thomas M. Neubauer & Ben L. Feringa. Dynamic control of chirality in phosphine ligands for enantioselective catalysis, Nature Communications 6, doi:10.1038/ncomms7652

www.benferinga.com

Last modified:10 June 2015 11.19 a.m.
printView this page in: Nederlands

More news

  • 23 September 2019

    Standup Economics: UG experts and comedians take to the stage | 6 October

    On Sunday 6 October, Het Financieele Dagblad and Comedy Central, in collaboration with Het Akkoord van Groningen, will present the first edition of Standup Economics – the festival where economy and comedy come together. On various stages across the...

  • 20 September 2019

    Start of MOSAiC – the Greatest Arctic Research Expedition of All Time

    After a decade of preparations, it’s finally time: on the evening of 20 September the German icebreaker Polarstern departs from the Norwegian port of Tromsø. Escorted by the Russian icebreaker Akademik Fedorov, she will set sail for the Central Arctic...

  • 20 September 2019

    Imagining Science

    Noorderlicht and the University of Groningen (RUG) continue their collaboration in the ‘Imagining Science’ series. Each year they commission a photographer to depict a scientific research field in relation to the Noorderlicht festival-theme of the year...