Skip to ContentSkip to Navigation
About us Latest news Press information

Roest, Prof. Diederik

Diederik Roest (photo: Milette Raats)
Diederik Roest (photo: Milette Raats)

Dr Diederik Roest (1977) is Associate Professor of String Cosmology. Although he is particularly interested in the mathematical properties of string theory, he also likes to translate abstract theory into concrete experiments. For example, he studies how the existence of string theory could be proved by means of observations on the largest possible distance scales, such as cosmic background radiation. He hopes that the Planck space observatory’s latest measurements will offer clues as to whether string theory actually does play a role in nature. Roest is passionate about explaining complex science to the public in order to build trust in research.

In 2014, Roest was appointed a member of the Young Academy, a platform for young top scientists that organizes activities in the fields of interdisciplinarity, science policy, and science and society. The Young Academy annually selects ten talented researchers to join its ranks. In addition to proven research excellence, members must have a broad interest in science and science communication.

Roest is one of the academics who took the initiative for and are working on the online course on the academic world for 10 to 12-year-olds.

Previously in the news

Article for UK Magazine
Article for UK Magazine

Contact and more information

Publications

2020

Christodoulidis, P., Roest, D., & Sfakianakis, E. (2020). Attractors, bifurcations and curvature in multi-field inflation. Journal of Cosmology and Astroparticle Physics, 2020(8), [006]. https://doi.org/10.1088/1475-7516/2020/08/006
Christodoulidis, P., Roest, D., & Rosati, R. (2020). Many-field inflation: universality or prior dependence? Journal of Cosmology and Astroparticle Physics, (4), [021]. https://doi.org/10.1088/1475-7516/2020/04/021
Melville, S., Roest, D., & Stefanyszyn, D. (2020). UV constraints on massive spinning particles: Lessons from the gravitino. Journal of High Energy Physics, (2), [185]. https://doi.org/10.1007/JHEP02(2020)185

2019

Roest, D., Stefanyszyn, D., & Werkman, P. (2019). An algebraic classification of exceptional EFTs. Part II. Supersymmetry. Journal of High Energy Physics, (11), [077]. https://doi.org/10.1007/JHEP11(2019)077
Christodoulidis, P., Roest, D., & Sfakianakis, E. I. (2019). Angular inflation in multi-field alpha-attractors. Journal of Cosmology and Astroparticle Physics, 2019(11), [002]. https://doi.org/10.1088/1475-7516/2019/11/002
Christodoulidis, P., Roest, D., & Sfakianakis, E. I. (2019). Scaling attractors in multi-field inflation. Journal of Cosmology and Astroparticle Physics, 2019(12), [059]. https://doi.org/10.1088/1475-7516/2019/12/059

2018

CORE Collaboration, Finelli, F., Bucher, M., Achucarro, A., Ballardini, M., Bartolo, N., Baumann, D., Clesse, S., Errard, J., Handley, W., Hindmarsh, M., Kiiveri, K., Kunz, M., Lasenby, A., Liguori, M., Paoletti, D., Ringeval, C., Valiviita, J., van Tent, B., ... van de Weygaert, R. (2018). Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, (4), [016]. https://doi.org/10.1088/1475-7516/2018/04/016
Kallosh, R., Linde, A., Roest, D., Westphal, A., & Yamada, Y. (2018). Fibre inflation and alpha-attractors. Journal of High Energy Physics, (2), [117]. https://doi.org/10.1007/JHEP02(2018)117
Roest, D., Werkman, P., & Yamada, Y. (2018). Internal supersymmetry and small-field Goldstini. Journal of High Energy Physics, 2018(5), [190]. https://doi.org/10.1007/JHEP05(2018)190
Klein, R., Malek, E., Roest, D., & Stefanyszyn, D. (2018). No-go theorem for a gauge vector as a spacetime Goldstone mode. Physical Review D, 98(6), [065001]. https://doi.org/10.1103/PhysRevD.98.065001
Klein, R., Roest, D., & Stefanyszyn, D. (2018). Symmetry breaking patterns for inflation. Journal of High Energy Physics, (6), [006]. https://doi.org/10.1007/JHEP06(2018)006

2017

Freedman, D. Z., Roest, D., & Van Proeyen, A. (2017). A geometric formulation of supersymmetry. Fortschritte der physik-Progress of physics, 65(1), [1600106]. https://doi.org/10.1002/prop.201600106
Kallosh, R., Linde, A., Roest, D., & Yamada, Y. (2017). (D3)over-bar induced geometric inflation. Journal of High Energy Physics, 2017(7), [057]. https://doi.org/10.1007/JHEP07(2017)057
Crisostomi, M., Klein, R., & Roest, D. (2017). Higher derivative field theories: degeneracy conditions and classes. Journal of High Energy Physics, 2017(6), [124]. https://doi.org/10.1007/JHEP06(2017)124
Freedman, D. Z., Roest, D., & Van Proeyen, A. (2017). Off-shell Poincaré supergravity. Journal of High Energy Physics, 2017(2), [102]. https://doi.org/10.1007/JHEP02(2017)102
Klein, R., Roest, D., & Stefanyszyn, D. (2017). Spontaneously broken spacetime symmetries and the role of inessential Goldstones. Journal of High Energy Physics, 2017(10), [051]. https://doi.org/10.1007/JHEP10(2017)051
Chatzistavrakidis, A., Khoo, F. S., Roest, D., & Schupp, P. (2017). Tensor Galileons and gravity. Journal of High Energy Physics, 2017(3), [070]. https://doi.org/10.1007/JHEP03(2017)070

2016

Klein, R., & Roest, D. (2016). Exorcising the Ostrogradsky ghost in coupled systems. Journal of High Energy Physics, (7), [130]. https://doi.org/10.1007/JHEP07(2016)130
Klein, R., Ozkan, M., & Roest, D. (2016). Galileons as the Scalar Analogue of General Relativity. Physical Review D. https://doi.org/10.1103/PhysRevD.93.044053
Ferrara, S., & Roest, D. (2016). General sGoldstino inflation. Journal of Cosmology and Astroparticle Physics, (10), [038]. https://doi.org/10.1088/1475-7516/2016/10/038
Roest, D., Scalisi, M., & Werkman, P. (2016). Moduli backreaction on inflationary attractors. Physical Review D, 94(12), [123503]. https://doi.org/10.1103/PhysRevD.94.123503
Broy, B. J., Coone, D., & Roest, D. (2016). Plateau inflation from random non-minimal coupling. Journal of Cosmology and Astroparticle Physics, (5), [036]. https://doi.org/10.1088/1475-7516/2016/06/036
Kanosh, R., Linde, A., Roest, D., & Wrase, T. (2016). Sneutrino Inflation with alpha-attractors. Journal of Cosmology and Astroparticle Physics, (11), [046]. https://doi.org/10.1088/1475-7516/2016/11/046

2015

Roest, D., & Scalisi, M. (2015). Cosmological attractors from alpha-scale supergravity. Physical Review D, 92(4), [043525]. https://doi.org/10.1103/PhysRevD.92.043525
Carrasco, J. J. M., Kallosh, R., Linde, A., & Roest, D. (2015). Hyperbolic geometry of cosmological attractors. Physical Review D, 92(4-15), [041301]. https://doi.org/10.1103/PhysRevD.92.041301
Linde, A., Roest, D., & Scalisi, M. (2015). Inflation and Dark Energy with a Single Superfield. Journal of Cosmology and Astroparticle Physics. https://doi.org/10.1088/1475-7516/2015/03/017
Burgess, C. P., & Roest, D. (2015). Inflation by Alignment. Journal of Cosmology and Astroparticle Physics. https://doi.org/10.1088/1475-7516/2015/06/012
Gobbetti, R., Pajer, E., & Roest, D. (2015). On the Three Primordial Numbers. Journal of Cosmology and Astroparticle Physics. https://doi.org/10.1088/1475-7516/2015/09/058
Broy, B. J., Galante, M., Roest, D., & Westphal, A. (2015). Pole Inflation - Shift Symmetry and Universal Corrections. Journal of High Energy Physics. https://doi.org/10.1007/JHEP12(2015)149
Broy, B. J., Roest, D., & Westphal, A. (2015). Power Spectrum of Inflationary Attractors. Physical Review D, 91(2-15), [023514]. https://doi.org/10.1103/PhysRevD.91.023514
Coone, D., Roest, D., & Vennin, V. (2015). The Hubble Flow of Plateau Inflation. Journal of Cosmology and Astroparticle Physics. https://doi.org/10.1088/1475-7516/2015/11/010
Galante, M., Kallosh, R., Linde, A., & Roest, D. (2015). Unity of Cosmological Inflation Attractors. Physical Review Letters, 114(14), [141302]. https://doi.org/10.1103/PhysRevLett.114.141302
Ozkan, M., & Roest, D. (2015). Universality Classes of Scale Invariant Inflation.

2014

Garcia-Bellido, J., Roest, D., Scalisi, M., & Zavala, I. (2014). Can CMB data constrain the inflationary field range? Journal of Cosmology and Astroparticle Physics, 2014(9), [006]. https://doi.org/10.1088/1475-7516/2014/09/006
Blaback, J., Roest, D., & Zavala, I. (2014). de Sitter vacua from nonperturbative flux compactifications. Physical Review D, 90(2), [024065]. https://doi.org/10.1103/PhysRevD.90.024065
Kallosh, R., Linde, A., & Roest, D. (2014). Large field inflation and double alpha-attractors. Journal of High Energy Physics, (8), [052]. https://doi.org/10.1007/JHEP08(2014)052
Garcia-Bellido, J., & Roest, D. (2014). Large-N running of the spectral index of inflation. Physical Review D, 89(10), [103527]. https://doi.org/10.1103/PhysRevD.89.103527
Dibitetto, G., Guarino, A., & Roest, D. (2014). Lobotomy of flux compactifications. Journal of High Energy Physics, (5), [067]. https://doi.org/10.1007/JHEP05(2014)067
Garcia-Bellido, J., Roest, D., Scalisi, M., & Zavala , I. (2014). Lyth bound of inflation with a tilt. Physical Review D, 90(12), [123539]. https://doi.org/10.1103/PhysRevD.90.123539
Kallosh, R., Linde, A., & Roest, D. (2014). The double attractor behavior of induced inflation. Journal of High Energy Physics, (9), [062]. https://doi.org/10.1007/JHEP09(2014)062
Kallosh, R., Linde, A., & Roest, D. (2014). Universal Attractor for Inflation at Strong Coupling. Physical Review Letters, 112(1), 011303-1-011303-5. https://doi.org/10.1103/PhysRevLett.112.011303
Roest, D. (2014). Universality classes of inflation. Journal of Cosmology and Astroparticle Physics, (1), 007-0-007-10. https://doi.org/10.1088/1475-7516/2014/01/007

2013

Borghese, A., Roest, D., & Zavala, I. (2013). A geometric constraint on supergravity inflation. In Proceedings of the Corfu Summer Institute 2012 "School and Workshops on Elementary Particle Physics and Gravity" September 8-27, 2012 Corfu, Greece (Corfu), (European Workshop on String Theory). http://inspirehep.net/record/1249739/files/Corfu2012_110.pdf
Borghese, A., Roest, D., & Zavala, I. (2013). Inflationary implications of supersymmetry breaking. In Proceedings, 9th Mexican School on Gravitation and Mathematical Physics: Cosmology for the XXI Century: Inflation, Dark Matter and Dark Energy (DGFM-SMF) : Puerto Vallarta, Jalisco, Mexico, December 3-7, 2012 https://doi.org/10.1063/1.4817034
Roest, D., Scalisi, M., & Zavala Carrasco, I. (2013). Kähler potentials for Planck inflation. Journal of Cosmology and Astroparticle Physics, 2013(11), [007]. https://doi.org/10.1088/1475-7516/2013/11/007
Kallosh, R., Linde, A., & Roest, D. (2013). Superconformal inflationary α-attractors. Journal of High Energy Physics, (11), 198-0-198-12. https://doi.org/10.1007/JHEP11(2013)198
Borghese, A., Dibitetto, G., Guarino, A., Roest, D., & Varela, O. (2013). The SU(3)-invariant sector of new maximal supergravity. Journal of High Energy Physics, (3), 082-0-082-41. [082]. https://doi.org/10.1007/JHEP03(2013)082
Borghese, A., Guarino, A., & Roest, D. (2013). Triality, periodicity and stability of SO(8) gauged supergravity. Journal of High Energy Physics, (5), 107-0-107-14. [107]. https://doi.org/10.1007/JHEP05(2013)107

2012

Borghese, A., Roest, D., & Zavala, I. (2012). A geometric bound on F-term inflation. Journal of High Energy Physics, 2012(9), [021]. https://doi.org/10.1007/JHEP09(2012)021
Borghese, A., Guarino, A., & Roest, D. (2012). All G(2) invariant critical points of maximal supergravity. Journal of High Energy Physics, 2012(12), 108-0-108-9. [108]. https://doi.org/10.1007/JHEP12(2012)108
Dibitetto, G., Fernandez-Melgarejo, J. J., Marques, D., & Roest, D. (2012). Duality orbits of non-geometric fluxes. Fortschritte der physik-Progress of physics, 60(11-12), 1123-1149. https://doi.org/10.1002/prop.201200078
Dibitetto, G., Guarino, A., & Roest, D. (2012). Exceptional flux compactifications. Journal of High Energy Physics, 2012(5), 056-0-056-44. [056]. https://doi.org/10.1007/JHEP05(2012)056
Borghese, A., Linares, R., & Roest, D. (2012). Minimal stability in maximal supergravity. Journal of High Energy Physics, (7), [034]. https://doi.org/10.1007/JHEP07(2012)034
Aprile, F., Borghese, A., Dector, A., Roest, D., & Russo, J. G. (2012). Superconductors for superstrings on AdS(5) x T-1,T-1. Journal of High Energy Physics, (8), [145]. https://doi.org/10.1007/JHEP08(2012)145
Dibitetto, G., Guarino, A., & Roest, D. (2012). Vacua analysis in extended supersymmetry compactifications. Fortschritte der physik-Progress of physics, 60(9-10), 987-990. https://doi.org/10.1002/prop.201200004

2011

Dibitetto, G., Guarino, A., & Roest, D. (2011). Charting the landscape of N=4 flux compactifications. Journal of High Energy Physics, 2011(3), 1-37. [137]. https://doi.org/10.1007/JHEP03(2011)137
Aprile, F., Roest, D., & Russo, J. G. (2011). Holographic superconductors from gauged supergravity. Journal of High Energy Physics, 2011(6), 1-31. [040]. https://doi.org/10.1007/JHEP06(2011)040
Dibitetto, G., Guarino, A., & Roest, D. (2011). How to halve maximal supergravity. Journal of High Energy Physics, 2011(6), 1-13. [030]. https://doi.org/10.1007/JHEP06(2011)030
Borghese, A., & Roest, D. (2011). Metastable supersymmetry breaking in extended supergravity. Journal of High Energy Physics, 2011(5), 1-25. [102]. https://doi.org/10.1007/JHEP05(2011)102

2010

Roest, D., & Rosseel, J. (2010). De Sitter in extended supergravity. Physics Letters B, 685(2-3), 201-207. https://doi.org/10.1016/j.physletb.2010.01.064
Dibitetto, G., Linares, R., & Roest, D. (2010). Flux compactifications, gauge algebras and De Sitter. Physics Letters B, 688(1), 96-100. https://doi.org/10.1016/j.physletb.2010.03.074
Dibitetto, G., Linares, R., & Roest, D. (2010). Flux compactifications, gauge algebras and De Sitter. In A. Macias, & M. Maceda (Eds.), RECENT DEVELOPMENTS IN GRAVITATION AND BEC'S PHENOMENOLOGY (pp. 232-238). (AIP Conference Proceedings; Vol. 1318). AMER INST PHYSICS.

2009

Roest, D. (2009). Gaugings at angles from orientifold reductions. Classical and Quantum Gravity, 26(13), [135009]. https://doi.org/10.1088/0264-9381/26/13/135009
Roest, D., & Samtleben, H. (2009). Twin supergravities. Classical and Quantum Gravity, 26(15), [155001]. https://doi.org/10.1088/0264-9381/26/15/155001

2008

Kleinschmidt, A., & Roest, D. (2008). Extended symmetries in supergravity: the semi-simple case. Journal of High Energy Physics, 2008(7), 035-0-035-37. https://doi.org/10.1088/1126-6708/2008/07/035
Bergshoeff, E. A., Gomis, J., Nutma, T. A., & Roest, D. (2008). Kac-Moody spectrum of (half-) maximal supergravities. Journal of High Energy Physics, 2008(2), [069]. https://doi.org/10.1088/1126-6708/2008/02/069
Bergshoeff, E. A., de Roo, M., Hohm, O., & Roest, D. (2008). Multiple membranes from gauged supergravity. Journal of High Energy Physics, 2008(8), [091]. https://doi.org/10.1088/1126-6708/2008/08/091
Bergshoeff, E. A., Hohm, O., Roest, D., Samtleben, H., & Sezgin, E. (2008). The Superconformal Gaugings in Three Dimensions. In EPRINTS-BOOK-TITLE s.n..
Bergshoeff, E. A., Hohm, O., Roest, D., Samtleben, H., & Sezgin, E. (2008). The superconformal gaugings in three dimensions. Journal of High Energy Physics, 2008(9), [101]. https://doi.org/10.1088/1126-6708/2008/09/101

2007

Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2007). Aspects of Spinorial Geometry. Modern Physics Letters A, 22(1), 1-16. https://doi.org/10.1142/S0217732307022517
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2007). Classification of supersymmetric backgrounds of string theory. Fortschritte der Physik, 55(5), 736-741. https://doi.org/10.1002/prop.200610363
Bergshoeff, E. A., Hartong, J., Ortin, T., & Roest, D. (2007). Evidence for new seven-branes. Fortschritte der physik-Progress of physics, 55(5-7), 661-665. https://doi.org/10.1002/prop.200610351
Gran, U., Papadopoulos, G., Sloane, P., & Roest, D. (2007). Geometry of all supersymmetric type I backgrounds. Journal of High Energy Physics, 2007(8), 074-0-074-74. https://doi.org/10.1088/1126-6708/2007/08/074
Cacciatori, S. L., Caldarelli, M. M., Klemm, D., Mansi, D. S., & Roest, D. (2007). Geometry of four-dimensional Killing spinors. Journal of High Energy Physics, 2007(7), 046-0-046-59. https://doi.org/10.1088/1126-6708/2007/07/046
Bergshoeff, E., Hartong, J., Ortín, T., & Roest, D. (2007). IIB seven-branes revisited. Journal of Physics: Conference Series, 66(1), [012054]. https://doi.org/10.1088/1742-6596/66/1/012054
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2007). IIB solutions with N>28 Killing spinors are maximally supersymmetric. Journal of High Energy Physics, 2007(12), 070-0-070-27. https://doi.org/10.1088/1126-6708/2007/12/070
Gomis, J., & Roest, D. (2007). Non-propagating degrees of freedom in supergravity and very extended G2. Journal of High Energy Physics, 2007(11), 038-0-038-13. https://doi.org/10.1088/1126-6708/2007/11/038
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2007). N=31, D=11. Journal of High Energy Physics, 2007(2), 043-0-043-16. https://doi.org/10.1088/1126-6708/2007/02/043
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2007). N=31 is not IIB. Journal of High Energy Physics, 2007(2), 044-0-044-6. https://doi.org/10.1088/1126-6708/2007/02/044
Bergshoeff, E. A., Hartong, J., Ortin, T., & Roest, D. (2007). Seven-branes and supersymmetry. Journal of High Energy Physics, (2), 003-0-003-29. [003].
Gran, U., Papadopoulos, G., & Roest, D. (2007). Supersymmetric heterotic string backgrounds. Physics Letters B, 656(1), 119-126. https://doi.org/10.1016/j.physletb.2007.09.024

2006

Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2006). Maximally supersymmetric G-backgrounds of IIB supergravity. Nuclear Physics B, 753(1), 118-138. https://doi.org/10.1016/j.nuclphysb.2006.07.007
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2006). Systematics of IIB spinorial geometry. Classical and Quantum Gravity, 23(5), 1617. https://doi.org/10.1088/0264-9381/23/5/012
Gran, U., Gutowski, J., Papadopoulos, G., & Roest, D. (2006). The spinorial method of classifying supersymmetric backgrounds. Fortschritte der Physik, 54(5), 399-406. https://doi.org/10.1002/prop.200510285

2005

Bergshoeff, E., Collinucci, A., Gran, U., Roest, D., & Vandoren, S. (2005). Brane Solutions of Gravity–Dilaton–Axion Systems. In J. Lukierski, & D. Sorokin (Eds.), Fundamental Interactions and Twistor-Like Methods (767 ed., pp. 223-242). University of Groningen, Centre for Theoretical Physics.
Bergshoeff, E., Collinucci, A., Gran, U., Roest, D., & Vandoren, S. (2005). Brane solutions of gravity-dilaton-axion systems. In J. Lukierski, & D. Sorokin (Eds.), Fundamental Interactions and Twistor-Like Methods (pp. 223-242). (AIP CONFERENCE PROCEEDINGS; Vol. 767). AMER INST PHYSICS.
Bergshoeff, EA., Collinucci, A., Roest, D., Russo, JG., & Townsend, PK. (2005). Classical resolution of singularities in dilaton cosmologies. Classical and Quantum Gravity, 22(22), 4763-4781. https://doi.org/10.1088/0264-9381/22/22/008
Bergshoeff, EA., Collinucci, A., Roest, D., Russo, JG., & Townsend, PK. (2005). Cosmological D-instantons and cyclic universes. Classical and Quantum Gravity, 22(13), 2635-2652. https://doi.org/10.1088/0264-9381/22/13/008
Roest, D. (2005). M-theory and gauged supergravities. Fortschritte der physik-Progress of physics, 53(2), 119-230. https://doi.org/10.1002/prop.200410192
Bergshoeff, E., Collinucci, A., Gran, U., Roest, D., & Vandoren, S. (2005). Non-extremal instantons and wormholes in string theory. Fortschritte der physik-Progress of physics, 53(7-8), 990-996. https://doi.org/10.1002/prop.200410227
Gran, U., Papadopoulos, G., & Roest, D. (2005). Systematics of M-theory spinorial geometry. Classical and Quantum Gravity, 22(13), 2701. https://doi.org/10.1088/0264-9381/22/13/013

2004

Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortin, T., & Roest, D. (2004). Gauged supergravities from Bianchi's group manifolds. Classical and Quantum Gravity, 21(10), S1501-S1507. [PII S0264-9381(04)76676-9]. https://doi.org/10.1088/0264-9381/21/10/022
Roest, D. (2004). M-theory and Gauged Supergravities. s.n.
Roest, D. (2004). M-theory and gauged supergravities. s.n.
Bergshoeff, E., Collinucci, A., Gran, U., Roest, D., & Vandoren, S. (2004). Non-extremal D-instantons. Journal of High Energy Physics, 2004(10), [031]. https://doi.org/10.1088/1126-6708/2004/10/031
Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortín, T., & Roest, D. (2004). The Bianchi classification of maximal D = 8 gauged supergravities. Fortschritte der Physik, 52(6), 472-476.
Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortin, T., & Roest, D. (2004). The Bianchi classification of maximal D=8 gauged supergravities. Fortschritte der physik-Progress of physics, 52(6-7), 472-476. https://doi.org/10.1002/prop.200310132
Bergshoeff, E., Nielsen, M., & Roest, D. (2004). The domain walls of gauged maximal supergravities and their M-theory origin. Journal of High Energy Physics, 2004(7), [006]. https://doi.org/10.1088/1126-6708/2004/07/006
Bergshoeff, E., Collinucci, A., Gran, U., Nielsen, M., & Roest, D. (2004). Transient quintessence from group manifold reductions or how all roads lead to Rome. Classical and Quantum Gravity, 21(8), 1947-1969. [PII S0264-9381(04)74508-6]. https://doi.org/10.1088/0264-9381/21/8/003

2003

Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., & Roest, D. (2003). Domain walls and the creation of strings. Classical and Quantum Gravity, 20(15), 3465-3482. [PII S0264-9381(03)63979-1]. https://doi.org/10.1088/0264-9381/20/15/313
Alonso-Alberca, N., Ortin, T., Bergshoeff, E., Gran, U., Linares, R., & Roest, D. (2003). Domain walls of D=8 gauged supergravities and their D=11 origin. Journal of High Energy Physics, (6), 038-0-038-22. [038].
Bergshoeff, E., Wit, T. D., Gran, U., Linares, R., & Roest, D. (2003). (Non-)Abelian gauged supergravities in nine dimensions. In S. Bentvelsen, P. DeJong, J. Koch, & E. Laenen (Eds.), EPRINTS-BOOK-TITLE (pp. 855-860). University of Groningen, Centre for Theoretical Physics.
Bergshoeff, E., de Wit, T., Gran, U., Linares, R., & Roest, D. (2003). (Non-)Abelian-gauged supergravities in nine dimensions. Classical and Quantum Gravity, 20(12), S425-S431. [PII S0264-9381(03)59068-2]. https://doi.org/10.1088/0264-9381/20/12/307
Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortín, T., & Roest, D. (2003). The Bianchi classification of maximal D = 8 gauged supergravities. Classical and Quantum Gravity, 20, 3997-4014.
Bergshoeff, E., Gran, U., Linares, R., Nielsen, M., Ortin, T., & Roest, D. (2003). The Bianchi classification of maximal D=8 gauged supergravities. Classical and Quantum Gravity, 20(18), 3997-4014. [PII S0264-9381(03)65944-7].
Bergshoeff, E., Gran, U., & Roest, D. (2003). Type IIB 7-brane solutions from nine-dimensional domain walls. In L. Baulieu, E. Rabinovici, J. Harvey, B. Pioline, & P. Windey (Eds.), PROGRESS IN STRING, FIELD AND PARTICLE THEORY (pp. 397-400). (NATO SCIENCE SERIES, SERIES II: MATHEMATICS, PHYSICS AND CHEMISTRY; Vol. 104). Springer.

2002

Behrndt, K., Bergshoeff, E., Roest, D., & Sundell, P. (2002). Massive dualities in six dimensions. Classical and Quantum Gravity, 19(8), 2177-2199. https://doi.org/10.1088/0264-9381/19/8/309
Bergshoeff, E., Wit, T. D., Gran, U., Linares, R., & Roest, D. (2002). (Non-)abelian gauged supergravities in nine dimensions. Journal of High Energy Physics, 2002(10), 061-0-061-35. [061]. https://doi.org/10.1088/1126-6708/2002/10/061
Bergshoeff, E., Gran, U., & Roest, D. (2002). Type IIB 7-brane solutions from nine-dimensional domain walls. Classical and Quantum Gravity, 19(15), 4207-4225. [PII S0264-9381(02)37758-X]. https://doi.org/10.1088/0264-9381/19/15/321

2001

Bergshoeff, E., Kallosh, R., Ortín, T., Roest, D., & Proeyen, A. V. (2001). Brane Plus Bulk Supersymmetry in Ten Dimensions. In J. Lukierski, & J. Rembieliński (Eds.), New Developments in Fundamental Interaction Theories (589 ed., pp. 31-45). (AIP CONFERENCE PROCEEDINGS; Vol. 589). University of Groningen, Centre for Theoretical Physics.
Bergshoeff, E., Kallosh, R., Ortín, T., Roest, D., & Proeyen, A. V. (2001). New formulations of D = 10 supersymmetry and D8–O8 domain walls. Classical and Quantum Gravity, 17, 3359-3382.
Bergshoeff, E., Kallosh, R., Ortin, T., Roest, D., & Van Proeyen, A. (2001). New formulations of D=10 supersymmetry and D8-O8 domain walls. Classical and Quantum Gravity, 18(17), 3359-3382.
Last modified:26 March 2020 12.06 p.m.
printView this page in: Nederlands