Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinXScience Linx News

Novel potent antimicrobial from thermophilic bacterium

12 March 2019

University of Groningen microbiologists and their colleagues from Lithuania have discovered a new glycocin, a small antimicrobial peptide with a sugar group attached, which is produced by a thermophilic bacterium and is stable at relatively high temperatures. They also succeeded in transferring the genes required to produce this glycocin to an E. coli bacterium. This makes it easier to produce and investigate this compound, which could potentially be used in biofuel production. These findings were published in Nature Communications on 7 March.

The rise of antibiotic resistance has spurred the search for new antimicrobials. Bacteriocins – peptide toxins produced by bacteria to inhibit growth in similar or related bacterial strains – are a possible alternative to the more traditional antibiotics. Bacteriocins would also be useful to protect high-temperature fermentations mediated by thermophilic bacteria. But this would require the use of bacteriocins that are stable at higher temperatures.

Mystery

Arnoldas Kaunietis | Photo University of Vilnius
Arnoldas Kaunietis | Photo University of Vilnius

‘That is why we were interested to find that the thermophilic bacterium Aeribacillus palladius, isolated from soil above an oil well in Lithuania, appeared to produce an antibacterial peptide,’ says University of Groningen Professor of Molecular Biology, Oscar Kuipers. Thus far, purification and identification of the compound had not been successful. Therefore, PhD student Arnoldas Kaunietis from Vilnius University spent almost two years in Kuipers’ lab to solve the mystery. He is first author on the new paper.

By analysing genomic information from the Lithuanian bacteria using BAGEL4 software, developed by Anne de Jong and Auke van Heel in Kuipers’ group, genes that are responsible for the production of the bacteriocin were discovered and the final gene product was named pallidocin. The BAGEL4 software searches for gene clusters with the potential ability to produce novel antimicrobials.

Pallidocin | Illustration Oscar Kuipers / University of Groningen
Pallidocin | Illustration Oscar Kuipers / University of Groningen

Sugar

The antimicrobial turned out to be a glycocin, belonging to a class of post-translationally modified peptides. This means that after its production, one or more functional groups are added to the peptide. In the case of glycocins, this functional group is a sugar. ‘Only five other glycocins were known thus far,’ says Kuipers.

In order to facilitate further research and engineering of this peptide, the genes responsible for the production of pallidocin were transferred to E. coli BL21 (DE3) bacteria. ‘The expression of the genes worked well, which is a real breakthrough, as it is difficult to express a whole antimicrobial gene cluster from a gram-positive bacterial strain directly in a gram-negative bacterium and to get the product secreted.’

Professor of Molecular Biology Oscar Kuipers | Photo Auke van Heel
Professor of Molecular Biology Oscar Kuipers | Photo Auke van Heel

Biofuel

After isolating pallidocin, the scientists were able to confirm that it is highly thermostable and exhibits an extremely strong activity against specific thermophilic bacteria. Furthermore, by using the sequence of pallidocin biosynthesis genes in BAGEL4, two similar peptides were discovered in two different strains of Bacillus bacteria. These peptides, named Hyp1 and Hyp2, were also successfully expressed in the E. coli strain. ‘This shows that the expression system works well for various glycocins; it is able to produce them in vivo’, says Kuipers.

Pallidocin might be useful in high-temperature fermentations, which are used to produce biofuels or chemical building blocks. The higher temperature makes it easier to recover volatile products such as ethanol, but also reduces the risk of contamination with common bacteria. However, contamination with thermophilic bacteria is possible. ‘Both pallidocin and Hyp1 appear to be active against thermophilic bacteria and some Bacillus species,’ says Kuipers. And there could be more applications: ‘Contamination by thermophiles is also a problem in the food industry.’

Reference: Arnoldas Kaunietis, Andrius Buivydas, Donaldas J. Čitavičius & Oscar P. Kuipers: Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nature Communications 7 March 2019

Last modified:12 March 2019 3.48 p.m.
printView this page in: Nederlands

More news

  • 11 July 2019

    Major companies’ annual reports too vague about climate impact

    Many major Dutch companies publish extensive information about climate impact in their annual reports. However, very few companies provide concrete, detailed information about their own CO2 emissions, the impact of climate change on their business...

  • 08 July 2019

    UG permanently closes Yantai project

    The University of Groningen (UG) has permanently closed the project aimed at creating a branch campus in Yantai. Discussions were held with China Agricultural University, the city of Yantai and the Province of Shandong.

  • 03 July 2019

    Cheap train tickets boost public transport use but reduce customer satisfaction

    Offers of cheap single train tickets through retailers such as Kruidvat or Etos have a positive impact on the number of kilometres travelled by rail. This impact is much bigger than that of more general TV, newspaper or magazine advertising. However,...