Femke Oosterhof and Rob Timmermans - Publication in Physical Review Letters
An interesting class of beyond-the-Standard-Model-physics models violates baryon number by two units. In such models, which are motivated by the cosmological matter-antimatter asymmetry, the proton is stable but neutrons oscillate into antineutrons and otherwise stable atomic nuclei can decay. An outstanding problem is how to relate nuclear decay rates to the underlying baryon-number-violating interactions among quarks and gluons.
In this letter, we develop a new framework based on effective field theory to overcome this challenge for the deuteron. We use the concept of unitarity to relate the lifetime of the deuteron to physical quantities related to the scattering of nucleons and antinucleons. We argue that for most sources of baryon-number violation a direct connection exists between neutron-antineutron oscillation time and the deuteron lifetime. In particular, we show that experiments on the latter set a more stringent limit on the neutron-antineutron oscillation time than previously thought.
However, for one particular source of baryon-number violation the ratio of nuclear lifetimes and the neutron-antineutron oscillation time can be very different. This would allow for the partial identification of the symmetry-breaking sources. Our results are of interest to a broad audience of theorists and experimentalists in nuclear and particle physics and cosmology.
The article can be read in Physics Review Letters.

Last modified: | 21 June 2023 1.17 p.m. |
More news
-
04 July 2025
University of Groningen awards different prizes during Ceremony of Merits
The UG awarded different prizes to excellent researchers and students during the Ceremony of Merits on 4 July 2025.
-
02 July 2025
Relinde Weil reappointed as a member of the Supervisory Board UG
The Minister of Education has reappointed Relinde Weil for a second term as a member of the Supervisory Board of the University of Groningen.