Baker’s yeast has a biological clock ticking too
In PNAS scientific journal (Early Edition, January 19, 2010) University of Groningen chronobiologist Prof. Martha Merrow proves that Saccharomyces cerevisiae (baker’s yeast) has all the classic characteristics of a biological clock. As Saccharomyces cerevisia has been the standard model system in genetic biology for some time now, as a consequence chronobiology now has access to a plethora of research tools and methods developed in that regard. Research into the molecular mechanisms of the biological clock will quickly gain momentum, Merrow predicts.
The biological clock is a fundamental process steering biological behaviour and physiological activity at all levels. Nearly everything in nature – from humans and animals to plants, fungi and bacteria – adjusts to the rhythm of day and night and the changing seasons. This does not involve simple switches turning processes on and off at a certain light intensity or temperature, but a biological clock – a system that generates a 24-hour rhythm from within the organism, in such a way that the rhythm can adjust to gradual changes in the environment such as the lengthening and shortening of the days.
Chronobiologists – biologists who study the biological clock – already know a great deal about the clock’s complex molecular mechanism. This knowledge stems from research into organisms which serve as genetic model systems in molecular biology. However, nothing was known about a biological clock for the most heavily researched eukaryotic model system, the single-celled organism Saccharomyces cerevisia.
To prove the presence of a biological clock, Martha Merrow put Saccharomyces cerevisia to a number of classic standard tests. She grew the yeast in a fermentor in an environment where the temperature was kept at 21°C for 12 hours and then at 28°C for 12 hours, in a 24-hour cycle. Those conditions, times and temperatures were varied in a number of experiments, where the acidity and the concentration of dissolved oxygen were used as measure of activity of biochemical processes in the yeast cells.
‘All our tests were positive,’ Merrow says. ‘We can now safely say that baker’s yeast has a biological clock.’ As a result, chronobiology can now bring a complete arsenal of powerful, recently developed DNA research tools and methods to bear. ‘Research into the molecular mechanisms of the biological clock will quickly gain momentum,’ Merrow predicts. ‘We’re preparing ourselves for a quick dash.’
Article: Zheng Eelderink-Chen, Gabriella Mazzota, Marcel Sturre, Jasper Bosman, Till Roenneberg, and Martha Merrow, A circadian clock in Saccharomyces cerevisiae, PNAS (doi:10.1073/pnas.0907902107)
Last modified: | 13 March 2020 01.58 a.m. |
More news
-
08 May 2025
KNAW appoints three professors of UG/UMCG as new members
Professors Jingyuan Fu, Lisa Herzog, and Helga de Valk of the UG have been appointed members by the Royal Netherlands Academy of Arts and Sciences (KNAW).
-
07 May 2025
Students Investigate Noise Around Schools
Psychologist Kirsten van den Bosch has known for a long time: sound is much more than just background noise. Now she has the opportunity to demonstrate this on a large scale.
-
06 May 2025
Science for Society | Exercise-based learning improves children’s skills
Teaching primary school children language and maths through exercise improves their attention and task orientation. Jumping and jogging for half an hour, three times a week, while absorbing the teaching material, improves test results.