Skip to ContentSkip to Navigation
About us Practical matters How to find us B.D.H.K. (Britas Klemens) Eriksson, Prof

Research interests

Understanding consequences of the global erosion of species for the integrity of the biosphere is one of the grand challenges for biological sciences in the 21st century. Biodiversity determines the function of ecological communities, including how they respond to major threats to human welfare such as climate change and nutrient loading. For more than two decades, the overall aim of my research has therefore been to understand how biodiversity loss (in the broad sense) affects the function and resilience of natural communities.

Current projects

The destruction of coastal fish communities through modification of our coastlines is one of the largest ecological catastrophes in northern Europe. Fish in the Wadden Sea is in dramatic decline. Especially threatened are those fish that migrate and use the Dutch coasts for part of their life-cycle and that are constrained by barriers such as seawalls and dams. My prioritized research goals are currently therefore to understand the importance of coastal habitats for fish, why coastal fish is in decline, and how fish in turn shape their own habitat and its wider ecosystem.

The swimway of fish

In a five year project on fish we explore how fish use the Wadden Sea during different parts of their life-cycle. We have two main targets: 1) to document the function of foreshore salt-marshes for fish; and 2) to experimentally test the function of small-scale reef structures for fish.

Salt-marshes: The Netherlands have battled the sea for centuries and provide a template for the engineering solution to safe-guard highly populated coastal areas from rising sea levels. The Dutch solution is tempting because it provide instant safety by constructing a hard land-sea border that protects us from marine intrusion. At the same time it is an ecological catastrophe, transforming multi-functional wetlands that provide a portal between fresh and salt, into an impermeable barrier of land. Here we explore the function of the leftover salt-marches for fish. These man-made marshes outside the sea-wall are mainly managed for grazing livestock and birds, and are traditionally not acknowledged as valuable for marine organisms. We show that these foreshore marshes lack important aspects of habitat variability that occur in natural marshes, but that they still are valuable for fish and need to be accounted for when designing management plans for the failing coastal fish ecosystem in the Netherlands.

Reef restoration: Many fish use hard substrate habitat types during their life cycle for different functions; such as for spawning grounds, nurseries, hunting areas, and shelter. Historically, the Wadden Sea was connected to a large inland marsh landscape and was composed of a diversity of hard substrate types, including sublittoral shellfish and tube worm reefs, rocks of different sizes (from glacial deposits of boulders to gravel), driftwood, and hardened peat. The benthic habitats have been impacted by bottom-contact fisheries, including direct harvest of the hard substrates themselves, as well as coastal development and dredging practices homogenizing the bottom substrate. Consequently, the presence of sublittoral hard structures have  decreased dramatically in the Wadden Sea compared to historic records. In this project we test effects of different types of reef restoration on the fish community.