Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinXScience Linx News

ALMA finds stardust

07 January 2014

Striking new observations with the Atacama Large Millimeter/submillimeter Array (ALMA) telescope capture, for the first time, the remains of a recent supernova brimming with freshly formed dust. If enough of this dust makes the perilous transition into interstellar space, it could explain how many galaxies acquired their dusty, dusky appearance.

ALMA observes the Universe in different frequency bands. One of those, Band 9, was designed and constructed by SRON Groningen in collaboration with staff from the University of Groningen Kapteyn Institute for Astronomy.

An international team of astronomers used ALMA to observe the glowing remains of supernova 1987A, which is in the Large Magellanic Cloud, a dwarf galaxy orbiting the Milky Way approximately 168,000 light-years from Earth. Light from this supernova arrived at Earth in 1987, inspiring its name. This makes 1987A the closest observed supernova explosion since Johannes Kepler’s observation of a supernova inside the Milky Way in 1604.

With ALMA’s unprecedented resolution and sensitivity, the research team was able to image the far more abundant cold dust, which glows brightly in millimeter and submillimeter light. The astronomers estimate that the remnant now contains about 25 percent the mass of our Sun in newly formed dust. They also found that significant amounts of carbon monoxide and silicon monoxide have formed.

Supernovas, however, can both create and destroy dust grains. As the shockwave from the initial explosion radiated out into space, it produced bright glowing rings of material, as seen in earlier observations with the Hubble Space Telescope.

After hitting this envelope of gas, which was sloughed off by the progenitor red giant star as it neared the end of its life, a portion of this powerful explosion rebounded back toward the center of the remnant. At some point, this rebound shockwave will slam into these billowing clumps of freshly minted dust. It’s likely that some fraction of the dust will be blasted apart at that point. But if a good fraction survives and makes it into interstellar space, it could account for the copious dust astronomers detect in the early universe.

The new study is a follow-up of observations made by the Herschel infrared satellite, for which SRON Groningen also built an instrument.

The results are being reported at the January meeting of the American Astronomical Society (AAS). They also are accepted for publication in the Astrophysical Journal Letters and available as preprint .

Source: press NRAO release.

Image from ALMA (left), showing dust in red and the shockwave in green/blue, and an artists impression (right).
Image from ALMA (left), showing dust in red and the shockwave in green/blue, and an artists impression (right).
Last modified:14 November 2017 2.55 p.m.
printView this page in: Nederlands

More news

  • 11 July 2019

    Major companies’ annual reports too vague about climate impact

    Many major Dutch companies publish extensive information about climate impact in their annual reports. However, very few companies provide concrete, detailed information about their own CO2 emissions, the impact of climate change on their business...

  • 08 July 2019

    UG permanently closes Yantai project

    The University of Groningen (UG) has permanently closed the project aimed at creating a branch campus in Yantai. Discussions were held with China Agricultural University, the city of Yantai and the Province of Shandong.

  • 03 July 2019

    Cheap train tickets boost public transport use but reduce customer satisfaction

    Offers of cheap single train tickets through retailers such as Kruidvat or Etos have a positive impact on the number of kilometres travelled by rail. This impact is much bigger than that of more general TV, newspaper or magazine advertising. However,...