Skip to ContentSkip to Navigation
Part of University of Groningen
Science Linx News

AI reduces computational time required to study fate of molecules exposed to light

01 December 2020

Light-induced processes are critical in transformative technologies such as solar energy harvesting, as well as in photomedicine and photoresponsive materials. Theoretical studies of the dynamics of photoinduced processes require numerous electronic structure calculations, which are computationally expensive. Scientists from the University of Groningen developed machine learning-based algorithms, which reduce these computations significantly. The Open Source software package that they developed, PySurf, was presented in a paper in the Journal of Chemical Theory and Computation on 24 November.

How do molecules behave when they are exposed to light? Knowledge of this process is not only central to crucial processes in nature, such as photosynthesis and vitamin D production, but it is also critical for the rational design of new molecules with specific photoresponsive properties.

Shirin Faraji | Photo Sylvia Germes
Shirin Faraji | Photo Sylvia Germes

Machine learning

Yet, despite great advances in hardware and computational methods, calculations of the interaction between light and molecules is still a challenge, explains Shirin Faraji, Associate Professor in Theoretical Chemistry, the lead author of the paper. ‘The high-level electronic structure calculations are already very costly for medium-sized molecules, typical chromophores have around thirty heavy atoms.’ Including the influence of the environment at quantum mechanical level on such a system is practically impossible.

‘Current software searches the entire conformational space, but we use machine learning to exclude parts of this conformational space search, making it a very smart search,’ Faraji explains. ‘Our software, therefore, requires several orders of magnitude less computational time than existing direct dynamics software.’ In the paper, the developers report the photodynamics of two benchmark molecules, SO2 and pyrazine, and show that their results are comparable to those obtained using simulations that are based entirely on quantum dynamics.

Algorithm

Furthermore, the software package was developed from scratch and is easy to adapt for specific purposes, for example by using plug-in and workflow engines. Faraji: ‘A PhD student could easily dig into the code and develop a specific algorithm, for example a new neural network-based algorithm.’

Representation of machine learning electronic-structure based excited states of a molecule responding to light | Illustration Faraji Lab
Representation of machine learning electronic-structure based excited states of a molecule responding to light | Illustration Faraji Lab

Faraji contributed code to several software packages, most notably Q-Chem, one of the world’s leading quantum chemistry software programs, and is currently a member of the Q-Chem Board of Directors. The new PySurf package will interface with Q-Chem, but also with other electronic structure software. PySurf is Open Source, which means that it is available as a free download together with the manual, and Faraji’s team will provide support for users.

First release

The PySurf software is the result of a project funded by a personal grant to Faraji from the Dutch Research Council (NWO) Vidi programme. Faraji: ‘We are only a year and a half into this five-year project. So, the current version is just the first release. We continue to work on the program to optimize it and to create a user-friendly interface.’

Reference: Maximilian F. S. J. Menger, Johannes Ehrmaier, and Shirin Faraji: PySurf: A Framework for Database Accelerated Direct Dynamics. J. Chem. Theory Comput. online 24 November 2020.

This work is part of the Innovational Research Incentives Scheme Vidi 2017 with project number 016.Vidi.189.044, which is (partly) financed by the Dutch Research Council (NWO).

Last modified:03 December 2020 4.57 p.m.
printView this page in: Nederlands

More news

  • 10 December 2020

    Aletta Jacobs Chairs: 15 female professors appointed

    On International Women’s Day this spring, Rector Magnificus Cisca Wijmenga announced that the UG would be creating 15 new chair positions for female professors, known as the Aletta Jacobs Chairs. Fifteen female professors will soon start their work...

  • 03 December 2020

    UG to award honorary doctorate to Feike Sijbesma

    On Friday 22 January 2021, the University of Groningen (UG) will award an honorary doctorate to Feike Sijbesma. The former CEO of DSM will be presented with his honorary doctorate by Rector Magnificus Cisca Wijmenga during the special Nobel...

  • 01 December 2020

    Integration of newcomers is almost at a standstill

    The lockdown in March 2020 was difficult for everyone in the Netherlands, but especially so for newcomers: they had 50% less contact than previously. As a consequence, they felt lonelier and their integration into society has almost come to a...