Global changes in extreme weather attributed to climate change and climate variability
Extreme weather events are projected to change due to climate change, the risk to societies is therefore also changing. In a new study, Dr. Karin van der Wiel (KNMI) and Prof. Richard Bintanja (KNMI, Univ. Groningen) demonstrate that the increased occurrence of monthly extreme heat events is predominantly caused by a warming mean climate. In contrast, future changes in monthly heavy rainfall events depend to a considerable degree on changes in climate variability. Examining the origin of changes in extreme events, changing mean or changing variability, provides valuable insights into the processes driving these important climatic changes.
Quantifying future extreme events
Extreme weather events, such as heatwaves, droughts or heavy rainfall events, pose a risk to societies and ecosystems. Climate change leads to a change in the frequency or severity of these events and as a result societal risks change as well. Understanding future changes in extreme events is therefore of broad interest.

To understand extreme events, two aspects of climate are important: the mean climate and climate variability. Both are subject to climate change, though the changes can be caused by different physical processes. Consequently the two aspects may change in different ways and impact extreme events in different, sometimes opposing, ways (Figure 1). In this new study the concept of Probability Ratio (PR) is extended, measuring the changes in extreme event frequency, to quantify the individual contribution of a changing mean climate and a changing climate variability to the overall trend in extreme event frequency.

Drivers of change
Using state-of-the-art large ensemble climate modelling experiments, the changing frequency of monthly high-temperature and heavy-precipitation is investigated. The research shows that the change in high-temperature events can for a very large part be explained by changing mean climate (Figure 2). Interestingly, heavy-precipitation events are strongly affected by changing variability (Figure 3). Differences in regional climate processes, such as the presence of sea ice or atmospheric rivers, lead to spatial differences in the mean/variability split. However, the individual contributions are robust across different levels of climate change, different definitions of extremeness and different climate models. The newly defined split thus seems to capture a fundamental aspect of climate change.

Lead author Karin van der Wiel says “The new information on the fundamental contributors to changing climate extremes helps to understand the physical mechanisms that lead to these changes. Better understanding will improve our climate projections, and will help to inform society on future risks.”
Last modified: | 05 January 2021 4.46 p.m. |
More news
-
29 April 2025
Impact | Rubber recycling
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Francesco Picchioni on his innovative way to recycle rubber.
-
29 April 2025
Impact | Improving Human-AI Decision-Making in healthcare
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Andra Cristiana Minculescu on her research project on Human-AI Decision-Making in healthcare.
-
28 April 2025
Engineering Smart Decisions for a Dynamic World
Dynamical systems, i.e. mathematical models that describe how things evolve over time, are at the heart of much of the modern world. The real challenge, however, lies in shaping the systems’ behaviour to achieve a specific goal.