Emergent properties of bio-physical self-organization in streams
Self-organization, the formation of spatial patterns due to ecological interactions, is a widespread phenomenon in natural ecosystems. Theoretical studies indicate that self-organization is an important regulating process in ecosystems. For instance, it can make ecosystems more resistant to disturbance. Studying these emergent effects of self-organization helps us manage and protect nature against climate change and human impacts. In her thesis, Loreta Cornacchia studied spatial self-organization of vegetation in rivers. In particular, I focused on the interaction between water flow and submerged vegetation, and its effects on river flows and biodiversity. My research indicates that vegetation buffers river ecosystems against changing hydrological conditions. These hydrological conditions can range from low flows to high flows (floods). At the same time, submerged vegetation supports the river's biodiversity. By maintaining habitat diversity, it creates conditions that are favourable for other species. Hence, this self-organization process might provide a nature-based solution to flow regulation. These findings suggest there might be a need to reconsider current management practices that typically remove vegetation because it is perceived to increase the risk of river flooding. As global climate change and human modifications to rivers are expected to increase hydrological extremes, this study shows how self-organized river ecosystems can adapt to maintain suitable flow conditions while also supporting high aquatic biodiversity.

Dissertation: http://hdl.handle.net/(...)1e-aebb-ad676e974095
Last modified: | 23 February 2021 08.47 a.m. |
More news
-
29 April 2025
Impact | Rubber recycling
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Francesco Picchioni on his innovative way to recycle rubber.
-
29 April 2025
Impact | Improving Human-AI Decision-Making in healthcare
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Andra Cristiana Minculescu on her research project on Human-AI Decision-Making in healthcare.
-
28 April 2025
Engineering Smart Decisions for a Dynamic World
Dynamical systems, i.e. mathematical models that describe how things evolve over time, are at the heart of much of the modern world. The real challenge, however, lies in shaping the systems’ behaviour to achieve a specific goal.