Skip to ContentSkip to Navigation
About us Latest news News News articles

Luca Nanetti - Strange materials, curious methods: Information loops in the brain

19 February 2013

There is little doubt that information flows in the nervous system. Imagine: the skin of our arm comes to close, sudden touch with something sharp; specific sensors register the event; an electric signal is carried by wires (axons) across relay stations (synapses); a motor response is generated; the arm is quickly withdrawn. Or maybe not … if the sharp object is a needle, attached to a syringe, and the whole is operated by a physician, we don’t move. What’s different in the information flow? A sharp needle, a cold surface, a gentle caress, all activate different sensors, and different circuits where information flows.


A more complex scenario is represented by the management of a situation of equilibrium, or, better, if and when a situation of equilibrium must be either kept, or broken. The very act of physical ‘standing’ involves a delicate balance of antagonist muscles; when we want to take a step that balance needs to be broken. A similar scenario presents in decision making. The Italian folklore reports a starving donkey who cannot choose between two equivalent heaps of hay; amusing and paradoxical how it sounds, one can wonder about how much different is actually our behaviour when we spend way too much time hesitating between, say, two different bottles of olive oil at the supermarket: in both cases the protagonist’s well-being depends from disrupting an equilibrium.

The central nervous system provides wonderfully flexible mechanisms to cope with the problematic situations depicted above; the outlines of the main pathways of information flows will be illustrated in the first part of the Colloquium, also using elements of embryology. A short introduction to how the ‘hardware’ wiring of the central nervous system is investigated will close the first section.

The second part will focus on an important brain subsystem: the basal ganglia. This group of structures is responsible for a number of both ‘logical’ and ‘physical’ subsystems, from skeletomotor management (the ‘standing up’ mentioned above), to decision making (the donkey dilemma), to emotion regulation, to … a lot more. Receive and classify information; wait for an equilibrium to be broken by either the reaching of a critical mass, or by the arrival of crucial information; take a decision in terms of ‘positive’ or ‘negative’ advice to other brain structures. This is the crucial role played by basal ganglia.

The last part of the Colloquium will be about an advanced technique, borrowed from econometrics, called ‘Granger Causality’, which potentially can show the direction of the information flow, and consequently which brain structures ‘rule’ the behavior of other parts depending on the cogent situation.
Last modified:13 June 2019 1.40 p.m.
View this page in: Nederlands

More news

  • 16 April 2024

    UG signs Barcelona Declaration on Open Research Information

    In a significant stride toward advancing responsible research assessment and open science, the University of Groningen has officially signed the Barcelona Declaration on Open Research Information.

  • 02 April 2024

    Flying on wood dust

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 18 March 2024

    VentureLab North helps researchers to develop succesful startups

    It has happened to many researchers. While working, you suddenly ask yourself: would this not be incredibly useful for people outside of my own research discipline? There are many ways to share the results of your research. For example, think of a...