Sander Bohte - Efficient Adaptive Spike-Coding in a Spike Response Model
25 September 2012
Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. While adaptation is an intrinsic feature of neuronal models like the Hodgkin-Huxley model, the challenge is to integrate adaptation in models of neural computation. Taking a cue from kinetic models of adaptation, we propose an Adaptive Spike Response Model where the spike-triggered adaptation dynamics are scaled multiplicatively by the adaptation state at the time of spiking. We show that in such a model, the firing rate in the multiplicative adaptation model saturates to a maximum spike-rate. When simulating variance-switching experiments, the model also quantitatively fits the experimental data over a wide dynamic range. Furthermore, such multiplicative spike-triggered adaptation suggests a straightforward interpretation of neural activity in terms of dynamic signal encoding with shifted and weighted exponential kernels. We show that when thus encoding rectified filtered stimulus signals, the Adaptive Spike Response Model achieves a high coding efficiency and maintains this efficiency over changes in the dynamic signal range of several orders of magnitude, without changing model parameters.
Last modified: | 10 February 2021 2.57 p.m. |
More news
-
29 April 2025
Impact | Rubber recycling
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Francesco Picchioni on his innovative way to recycle rubber.
-
29 April 2025
Impact | Improving Human-AI Decision-Making in healthcare
In the coming weeks the nominees for the Ben Feringa Impact Award 2025 will introduce themselves and their impactful research or project. This week: Andra Cristiana Minculescu on her research project on Human-AI Decision-Making in healthcare.
-
28 April 2025
Engineering Smart Decisions for a Dynamic World
Dynamical systems, i.e. mathematical models that describe how things evolve over time, are at the heart of much of the modern world. The real challenge, however, lies in shaping the systems’ behaviour to achieve a specific goal.