Zetao Chen - Supervised Feature Selection based on Generalized Matrix learning Vector Quantization
The curse of dimensionality” refers to the problem when analyzing high-dimensional data. Feature selection is the task of choosing a smaller feature subset which can capture the data property and predict the label information. The search strategy in feature space is of great importance. A lot of feature weighting algorithms have been proposed to rank the features with their contributions for classification and provide a search direction in the feature space. Generalized Matrix LVQ is a prototype-based supervised classification method whose distance matrix can account for pairwise correlations of features. Its application on feature selection has not yet been discovered. For feature selection, new energy is introduced during its training to provide more discriminative information of feature relevance and provide a search strategy in the feature subset selection. In my talk, I will introduce this GMLVQ-based feature selection algorithm and explore its application on different data set. Its comparison with other state-of-the-art feature selection algorithms will also be presented.
Laatst gewijzigd: | 13 juni 2019 13:40 |
Meer nieuws
-
13 maart 2025
Maria Antonietta Loi gehonoreerd als Materials Research Society Fellow
Prof. Maria Antoinietta Loi van de Faculty of Science and Engineering (Rijksuniversiteit Groningen) is benoemd tot Fellow van de Materials Research Society (MRS).
-
11 maart 2025
Water: wat als we er (soms) te veel van hebben?
Veranderende weersomstandigheden hebben invloed op van alles en nog wat, van energie en voedselvoorziening tot natuurrampen zoals overstromingen. Verschillende wetenschappers van de Faculty of Science and Engineering werken aan modellen om grip te...
-
05 maart 2025
Vrouwen in de wetenschap
De RUG viert Internationale Vrouwendag met een bijzondere fotoserie: Vrouwen in de wetenschap.