Skip to ContentSkip to Navigation
About us Latest news News News articles

Scanning tunneling microscopy studies of light-induced switching of diarylethenes & functionalized graphene

11 June 2012

PhD ceremony: Mr. A. Arramel, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen

Dissertation: Scanning tunneling microscopy studies of light-induced switching of diarylethenes & functionalized graphene

Promotor(s): prof. B.J. van Wees, prof. B.L. Feringa

Faculty: Mathematics and Natural Sciences

The thesis of Arramel investigates two interesting topics: molecular switching and functionalized graphene on a solid surface. In order to study these respective interests, scanning tunneling microscopy is introduced as a characterization tool of the nanostructure at the single molecule level.

Arramel’s primary projects involved the investigation of the molecular switching behavior on gold surface. In particular, this thesis is dedicated to demonstrate the light-induced photoswitching behavior of the new class of diarylethene switches embedded in the self-assembled monolayers of dodecanethiol matrices at room temperature. One of the molecules of interest is S,S'-((4,4'-(perfluorocyclopent-1-ene-1,2-diyl)bis(5-methylthiophene-4,2-diyl))bis(4,1-phenylene)) diethanethiolate (abbreviated as As-DE). In addition, the charge transport properties of the molecular switches were measured using Scanning Tunneling Spectroscopy (STS) at low temperature. The I-V characteristics show that the Highest Occupied Molecular Orbitals and the Lowest Unoccupied Molecular Orbitals were successfully determined.

In the second part of the thesis, an attempt to open the electronic band gap in graphene via two approaches: reversible hydrogenation and porphyrins physisorption is investigated, respectively. The former involves the reactive ion etching technique to hydrogenate the graphene surface The chemisorption of hydrogen atoms changes the sp2 hybridization of carbon atoms to tetragonal sp3 hybridization, consequently modifying the surface geometry and local electronic properties. Moreover, the reversible bandgap opening of the graphene is possible by means of the thermal annealing. Another approach to open a gap in graphene is using the adsorption of porphyrins to introduce the charge transfer effect onto the chemically vapor deposition (CVD) graphene surface.

Last modified:13 March 2020 01.00 a.m.
View this page in: Nederlands

More news

  • 05 September 2024

    ERC Starting Grants for two UG researchers

    Two UG researches, both working at the Faculty of Science and Engineering, have been awarded an ERC Starting Grant: Jingxiu Xie and Gosia Wlodarczyk-Biegun. The European Research Council's (ERC) Starting Grants consist of €1.5 million each, for a...

  • 23 July 2024

    The chips of the future

    Our computers use an unnecessarily large amount of energy, and we are reaching the limits of our current technology. That is why CogniGron is working on new materials that mimic the way the brain computes, and Professor Tamalika Banerjee will...

  • 18 July 2024

    Smart robots to make smaller chips

    A robotic arm in a factory that repeatedly executes the same movement: that’s a thing of the past, states Ming Cao. Researchers of the University of Groningen are collaborating with high-tech companies to make production processes more autonomous.