Skip to ContentSkip to Navigation
About usNews and EventsNews articles

On the relevance of carnosine and carnosinase for the development of diabetic nephropathy

10 October 2011

PhD ceremony: Ms. E.M.S. Riedl, 14.30 uur, Aula Academiegebouw, Broerstraat 5, Groningen

Dissertation: On the relevance of carnosine and carnosinase for the development of diabetic nephropathy

Promotor(s): prof. G.J. Navis, prof. B.A. Yard

Faculty: Medical Sciences

A polymorphism in the carnosinase-1-gene (CNDP1) is associated with susceptibility to diabetic nephropathy (DN). The shortest allele, i.e. (CTG)5 (Mannheim-Allele), seems to protect homozygous diabetic patients from DN. The studies presented in this thesis were conducted to find a biological plausibility for this association.

Carnosinase-1 (CN-1) is a glycosylated protein secreted into the serum. We demonstrate that secretion of CN-1 is better when CNDP1 contains a long CTG-repeat, while (CTG)5-encoded CN-1 is poorly secreted. (CTG)5-homozygous individuals therefore have low CN-1 concentrations in serum. Besides, we found that environmental factors influence CN-1 in serum. We provide evidence that hyperglycaemia increases CN-1 secretion by enhancing N-glycosylation leading to elevated CN-1 in (CTG)5-homozygous diabetic patients with poor blood glucose control. Moreover, we show that CN-1 is inhibited by homocarnosine and seems to be present in different ion-dependent conformations.

Several studies have indicated that carnosine, the natural substrate of CN-1, might be a protective factor in DN. We demonstrated that carnosine has anti-fibrotic and cytoprotective properties. Carnosine inhibits extra-cellular-matrix accumulation, influences TGF-β-production/ -signaling and protects diabetic glomeruli from apoptosis and podocyte loss.

In conclusion, the studies described in this thesis demonstrate that CN-1 in serum is determined by the CNDP1 polymorphism. Since low CN-1 in (CTG)5-homozygous patients implicates that more protective carnosine is available, our data might explain why this allele is beneficial. The CNDP1 polymorphism might improve risk-stratification of diabetic patients. However, our data also underscore that environmental factors have to be implemented in such strategies.

Last modified:15 September 2017 3.41 p.m.
printView this page in: Nederlands

More news

  • 11 July 2019

    Major companies’ annual reports too vague about climate impact

    Many major Dutch companies publish extensive information about climate impact in their annual reports. However, very few companies provide concrete, detailed information about their own CO2 emissions, the impact of climate change on their business...

  • 08 July 2019

    Zeven RUG-projecten krijgen financiering via de NWA Ideeëngenerator

    De NWO heeft aan 37 out-of-the-box onderzoeksideeën financiering toegekend vanuit de Ideeëngenerator. Een belangrijk kenmerk van de projecten is een mogelijke maatschappelijke impact. Elk van de onderzoekers krijgt 50.000 euro beschikbaar om met samen...

  • 08 July 2019

    UG permanently closes Yantai project

    The University of Groningen (UG) has permanently closed the project aimed at creating a branch campus in Yantai. Discussions were held with China Agricultural University, the city of Yantai and the Province of Shandong.