Published in Nature Materials: Ultra-thin piezoelectrics for energy harvesting
Piezoelectric materials can transform mechanical energy into electrical energy and vice versa. Because of that they are used in a multitude of everyday applications from gas lighters to inkjet printers and from ultrasound generators in medical applications (echography devices, blood sensors, lithotripters) to vibration dampers (in cars, skis, helicopter blade).
However, piezoelectric materials have the potential to play an even greater role in society by harvesting the energy that is wasted ubiquitously as vibrations (from cars, house appliances, industrial machine) and transforming it into electricity. But in order to fulfil our dream of paving roads, railways and homes with piezoelectrics, these materials have to be made lighter, thinner and less toxic than the ones available today (which contain heavy chemical elements). An important step into this direction has been achieved by a team led by Beatriz Noheda (Zernike Institute for Advanced Materials) and in collaboration with the Mesa+ Institute of the University of Twente, the CIN2-Barcelona and the CEMES-CNRS Institutes in Toulouse and Zaragoza. The results have been published in Nature Materials.
Flexoelectricity
The researches have shown that ultra-thin films (with thickness of about 100 atomic layers) of piezoelectric materials deposited under carefully designed conditions, self-organize and flex at the nanometer scale in periodic fashion. This produces huge strain gradients (large differences in the distances between atoms) in such a way that a new mechanism to produce piezoelectricity can take place (so-called flexoelectricity). This greatly increases the materials response at these small thicknesses. Moreover, this novel way of producing piezoelectricity is less dependent on the chemical composition and will allow non-toxic and more readily available materials to be investigated for piezoelectric energy harvesting application.
Prof. Beatriz Noheda is Associate Professor of Functional Nanomaterials and Rosalind Franklin Fellow. In 2004 she received a NWO Vidi-grant.
Reference: Flexoelectric rotation of polarization in ferroelectric thin films, G. Catalan, A. Lubk, A. H. G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. H. A. Blank and B. Noheda. Nature Materials.
DOI: http://dx.doi.org/10.1038/NMAT3141


Last modified: | 24 August 2021 09.21 a.m. |
More news
-
21 March 2025
Step closer to the commercialization of the child-friendly button cell battery
Fused Button Battery Holding BV has signed a license agreement with the University of Groningen (UG), the University Medical Center Groningen (UMCG), and Delft University of Technology (TU Delft). The agreement marks a crucial step in the...
-
18 March 2025
The riddle of the black-tailed godwits in Bangladesh
PhD student Delip Das is researching godwits in Bangladesh.
-
17 March 2025
Muhsin Harakeh receives Lise Meitner Prize
Prof. Dr. Muhsin Harakeh has won the 2024 Lise Meitner Prize of the European Physical Society (EPS).