Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

21 January 2011

PhD ceremony: Mr. K.P. Shaha, 14.45 uur, Academiegebouw, Broerstraat 5, Groningen

Title: Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

Promotor(s): prof. J.T.M. de Hosson

Faculty: Mathematics and Natural Sciences

In technological applications, the surface of the components plays an important role. This has led to the emergence of a new field, the surface engineering. Construction Parts fail due to high periodic fatigue, friction and wear, in other words, the failure is caused and affected by the condition of the surface. Modifying the surface layer of the base material is an appropriate way to improve performance of the material. There are many different types of surface treatments, but these must be chosen such that the properties of the substrate are not affected.

The aim of the research described in this thesis is optimizing the microstructure and mechanical and tribological behavior of a protective layer consisting of titanium carbide nanoparticles in an amorphous carbon matrix, DLC (diamond-like carbon). Composite materials are known for combining desired properties from different elements as well as the creation of new properties generated by the combination of suitable materials. The coatings that we have produced exhibit a significant enhancement of the toughness, wear resistance and exhibit a phenomenal low friction coefficient, about 100 times smaller than a metal-metal contact. The microstructure is optimized through a new method, pulsed-dc magnetron sputtering and studied using high-resolution transmission electron microscopy. An important aspect of friction is the roughness of the surface and existing deposition methods result in roughening of the surface during deposition of the protective layer. An important finding in our work is a method to suppress the roughening and to achieve even smoothing so that a smooth surface is obtained which yields a very low friction coefficient. The deposition process and the relevant mechanisms are theoretically described and experimentally validated.



Last modified:15 September 2017 3.40 p.m.

More news

  • 17 April 2019

    Why lightning often strikes twice

    In contrast to popular belief, lightning often does strike twice, but the reason why a lightning channel is ‘reused’ has remained a mystery. Now, an international research team led by the University of Groningen has used the LOFAR radio telescope to...

  • 16 April 2019

    Still going strong after four decades

    On March 29th professor of Applied Physics Jeff de Hosson was offered a farewell symposium, a few months after his official retirement date near the close of 2018. ‘But 29 March was the 100th birthday of Jan Francken, my predecessor.’ Besides, De Hosson...

  • 11 April 2019

    Ben Feringa in orbit around the Sun

    Dozens of minor planets that used to orbit the Sun anonymously were named by the International Astronomical Union on 6 April 2019. The asteroid that used to be known as ‘minor planet 12655’ was named after Prof. Ben Feringa, winner of the 2016 Nobel...