Skip to ContentSkip to Navigation
About us Latest news News News articles

Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

21 January 2011

PhD ceremony: Mr. K.P. Shaha, 14.45 uur, Academiegebouw, Broerstraat 5, Groningen

Title: Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

Promotor(s): prof. J.T.M. de Hosson

Faculty: Mathematics and Natural Sciences

In technological applications, the surface of the components plays an important role. This has led to the emergence of a new field, the surface engineering. Construction Parts fail due to high periodic fatigue, friction and wear, in other words, the failure is caused and affected by the condition of the surface. Modifying the surface layer of the base material is an appropriate way to improve performance of the material. There are many different types of surface treatments, but these must be chosen such that the properties of the substrate are not affected.

The aim of the research described in this thesis is optimizing the microstructure and mechanical and tribological behavior of a protective layer consisting of titanium carbide nanoparticles in an amorphous carbon matrix, DLC (diamond-like carbon). Composite materials are known for combining desired properties from different elements as well as the creation of new properties generated by the combination of suitable materials. The coatings that we have produced exhibit a significant enhancement of the toughness, wear resistance and exhibit a phenomenal low friction coefficient, about 100 times smaller than a metal-metal contact. The microstructure is optimized through a new method, pulsed-dc magnetron sputtering and studied using high-resolution transmission electron microscopy. An important aspect of friction is the roughness of the surface and existing deposition methods result in roughening of the surface during deposition of the protective layer. An important finding in our work is a method to suppress the roughening and to achieve even smoothing so that a smooth surface is obtained which yields a very low friction coefficient. The deposition process and the relevant mechanisms are theoretically described and experimentally validated.



Last modified:13 March 2020 01.09 a.m.
View this page in: Nederlands

More news

  • 27 May 2024

    Four honorary doctorates awarded by the UG

    On Friday, 24 May, the UG awarded four honorary doctorates to Dr Kate Crawford, Dr Tedros Ghebreyesus, Gerrit Hiemstra and Prof. Mariana Mazzucato. The presentation took place in the Aula of the Academy Building and was part of the university's...

  • 24 May 2024

    Lustrum 410 in pictures

    Lustrum 410 in pictures: We are already over half way through our lustrum! Enjoy a few photos of the lustrum so far.

  • 22 May 2024

    2.9 million for sustainable management salt marshes Wadden Sea

    Prof. Chris Smit (GELIFES) and Prof. Kai Jensen (University of Hamburg) will receive an NWA grant of 2.9 million euros for research that will contribute to sustainable managemnt of the salt marshes of the Wadden Sea.