Skip to ContentSkip to Navigation
About us Latest news News News articles

Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

21 January 2011

PhD ceremony: Mr. K.P. Shaha, 14.45 uur, Academiegebouw, Broerstraat 5, Groningen

Title: Pulsed-DC sputtered Tic/dlc nanocomposite coatings growth, microstructure and performance

Promotor(s): prof. J.T.M. de Hosson

Faculty: Mathematics and Natural Sciences

In technological applications, the surface of the components plays an important role. This has led to the emergence of a new field, the surface engineering. Construction Parts fail due to high periodic fatigue, friction and wear, in other words, the failure is caused and affected by the condition of the surface. Modifying the surface layer of the base material is an appropriate way to improve performance of the material. There are many different types of surface treatments, but these must be chosen such that the properties of the substrate are not affected.

The aim of the research described in this thesis is optimizing the microstructure and mechanical and tribological behavior of a protective layer consisting of titanium carbide nanoparticles in an amorphous carbon matrix, DLC (diamond-like carbon). Composite materials are known for combining desired properties from different elements as well as the creation of new properties generated by the combination of suitable materials. The coatings that we have produced exhibit a significant enhancement of the toughness, wear resistance and exhibit a phenomenal low friction coefficient, about 100 times smaller than a metal-metal contact. The microstructure is optimized through a new method, pulsed-dc magnetron sputtering and studied using high-resolution transmission electron microscopy. An important aspect of friction is the roughness of the surface and existing deposition methods result in roughening of the surface during deposition of the protective layer. An important finding in our work is a method to suppress the roughening and to achieve even smoothing so that a smooth surface is obtained which yields a very low friction coefficient. The deposition process and the relevant mechanisms are theoretically described and experimentally validated.

 

 

Last modified:13 March 2020 01.09 a.m.
View this page in: Nederlands

More news

  • 05 September 2024

    ERC Starting Grants for two UG researchers

    Two UG researches, both working at the Faculty of Science and Engineering, have been awarded an ERC Starting Grant: Jingxiu Xie and Gosia Wlodarczyk-Biegun. The European Research Council's (ERC) Starting Grants consist of €1.5 million each, for a...

  • 23 July 2024

    The chips of the future

    Our computers use an unnecessarily large amount of energy, and we are reaching the limits of our current technology. That is why CogniGron is working on new materials that mimic the way the brain computes, and Professor Tamalika Banerjee will...

  • 18 July 2024

    Smart robots to make smaller chips

    A robotic arm in a factory that repeatedly executes the same movement: that’s a thing of the past, states Ming Cao. Researchers of the University of Groningen are collaborating with high-tech companies to make production processes more autonomous.