Skip to ContentSkip to Navigation
About us Latest news News News articles

Crosslinked poly(ethylene glycol) based polymer coatings to prevent biomaterial-associated infections

22 September 2010

PhD ceremony: Ms. I.C. Saldarriaga Fernandez, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen

Thesis: Crosslinked poly(ethylene glycol) based polymer coatings to prevent biomaterial-associated infections

Promotor(s): prof. H.J. Busscher, prof. H.C. van der Mei, prof. D.W. Grainger

Faculty: Medical Sciences

 

The use of synthetic materials in prosthetics, artificial organs and biomedical devices has become a widespread practice in modern medicine. However, biomaterial associated infections (BAI) are well-known problems that often limit their application and represent a threat to the patient’s health and life as well as for the implant’s longevity and functionality.

The susceptibility of biomaterials for BAI depends on the interaction between biomaterial, microorganisms and host cells. The biomaterial surface dictates the fate of the implanted device, i.e., if the biomaterial surface promotes endogenous host cell spreading and proliferation, it is likely that the implanted device will successfully integrate within the host tissue, while it makes the surface less prone to bacterial colonization and biofilm formation.

Polymer brushes are being promoted as a promising method to reduce biomaterial-centered infections. These coatings have a high capacity to reduce protein adsorption and bacterial and tissue cell adhesion. In this thesis we used a poly(ethylene) glycol based brush-like polymer coating designed to inhibit non-specific biomolecular adsorption, protein and cell binding. By design, the polymer surface chemistry can be chemically modified to allow specific covalent immobilization of molecules within the same low non-specific binding coating matrix. This is specifically desired for biomaterial applications since it would be optimal for performance if bacterial adhesion is inhibited while the same coating promotes and supports cellular adhesion.

Due to the coating properties, the general aim of this thesis was to investigate the extent up to which crosslinked poly(ethylene glycol) polymer coatings contribute to prevent BAI.

 

Last modified:13 March 2020 01.14 a.m.
Share this Facebook LinkedIn
View this page in: Nederlands

More news

  • 05 March 2025

    Women in Science

    The UG celebrates International Women’s Day with a special photo series: Women in Science.

  • 28 February 2025

    Vici grants for two UG/UMCG scientists

    The Dutch Research Council (NWO) has awarded Vici grants, worth up to €1.5 million each, to Merel Keijzer and Charalampos Tsoumpas This will enable the researchers to develop an innovative line of research and set up their own research group for...

  • 11 February 2025

    Space for your disability

    When it comes to collaborations between researchers from different faculties, the UG is at the top of its game. A prime example is the Disabled City project that researches how the mobility of people with a physical disability can be explored...