In the world of parasitic wasps, mother is in charge
Female Nasonia parasitic wasps have almost complete control over the determination of the sex of their offspring. Biologists at the Evolutionary Genetics department at the University of Groningen have discovered how this species of parasitic wasp determines its offspring’s gender. Nasonia parasitic wasps are used as a biological pest control agent in the agricultural sector, but are also, like fruit flies, ideal for genetic research. The research will be published this week in the academic journal Science.
Nasonia wasps lay their eggs in fly larvae that are found in bird’s nests and corpses. They are also, however, easy to breed in laboratories, making them excellent model organisms for genetic and evolutionary research.
Biological control agents
Nasonia DNA has recently been completely mapped (Science, 15 January 2010). Based on this data, researchers at the University of Groningen were able to identify the genes that are important in the development of a male or female ichneumon wasp. This development is potentially important for the use of parasitic wasps in biological pest control. Only female parasitic wasps kill off pest insects, meaning that there is an economic advantage in increasing the number of female offspring.
Useful characteristic
Like fruit flies, Nasonia wasps are easy to cross-breed, which is important for genetic research. However, there is an important characteristic that sets Nasonia apart from fruit flies: because Nasonia males come from unfertilized eggs (as is the case with, for example, honey bees), males only have one set of chromosomes instead of two (like humans and fruit flies). Female Nasonia, on the other hand, come from fertilized eggs and do have two sets of chromosomes. This method of reproduction is known as ‘haplodiploid’ and is very useful when searching for particular genes and researching interactions between genes.
Gene regulation
Like humans, these wasps are also able to change the chemical structure of their DNA through methylation. This process plays an important part in switching genes on or off during development, and can lie at the root of birth defects. This makes Nasonia very important for research into the epigenetic mechanisms of gene regulation.
Sex determination
Surprisingly, Nasonia’s sex determination method turns out to be based on this type of DNA modification. A crucial role is played by the transformer (tra) gene, which produces the TRANSFORMER (TRA) enzyme. The TRA enzyme ensures that the organism develops into a female. The TRA enzyme also ensures that there is always enough TRA present through self-regulation. If a Nasonia female lays an egg, it will contain the tra messenger RNA, enabling TRA to be produced. Without the father’s set of chromosomes, however, the embryo cannot manufacture enough TRA by itself. This is why an unfertilized egg will always produce a male.
Epigenetic modification
If the egg has been fertilized, the embryo will start producing its own TRA, causing it to develop into a female. Apparently the mother, when passing on her genes, has switched off her tra gene by changing the DNA chemically. This is known as epigenetic modification and appears to be more common than previously thought.
Everything under control
So while fruit flies (and humans) need a father to be involved for sons to be produced, parasitic wasps thus need a father to produce daughters. The mothers, however, have complete control: they decide whether or not to fertilize an egg, using sperm that they have stored in their body. In doing so they regulate their offspring’s TRA production. In the world of Nasonia, mothers are in charge!
Note for the press
More information:
- Dr Louis van de Zande (louis.van.de.zande rug.nl, ++3150-3632126), Centre for Ecological and Evolutionary Studies (CEES)
- Eveline Verhulst (e.c.verhulst rug.nl , ++3150-3632119), Centre for Ecological and Evolutionary Studies (CEES)
- Prof. Leo Beukeboom, (l.w.beukeboom rug.nl, ++3150-3638448), Centre for Ecological and Evolutionary Studies (CEES)
The research was partly facilitated by support from NWO.
High resolution photographs for publication are available on request.
Last modified: | 13 March 2020 01.58 a.m. |
More news
-
24 April 2025
Highlighted papers April 2025
The antimalarial drug mefloquine could help treat genetic diseases such as cystic fibrosis, Duchenne muscular dystrophy, as well as some cancers.
-
22 April 2025
Microplastics and their effects on the human body
Professor of Respiratory Immunology Barbro Melgert has discovered how microplastics affect the lungs and can explain how to reduce our exposure.
-
15 April 2025
1.5 million funding from Province of Groningen for innovative technology in the region
The University of Groningen will receive nearly 1.5 million euros in funding from the Province of Groningen to assist entrepreneurial academic researchers in developing innovative ideas into a startup.