Skip to ContentSkip to Navigation
Part of University of Groningen
Science LinX Science Linx News

New molecular motor runs on chemical fuel

18 July 2022

A team led by Ben Feringa, Professor of Organic Chemistry at the University of Groningen, and Depeng Zhao of Sun Yat-Sen University (Guangzhou, China) has created a unidirectional molecular motor that runs on chemical fuel, just like molecular motor complexes in our cells. One rotation of the motor molecule is completed in six steps. The newly designed molecular motor was presented in the scientific journal Nature on 6 July and could eventually be used to perform mechanical functions.

The new motor molecuul makes one turn in six steps | Illustration Nature / University of Groningen

Chirality

Molecular rotary motors were first described by Feringa in 1999. This discovery earned him a share in the 2016 Nobel prize for Chemistry. His motor molecules were mainly powered by light. However, naturally occurring molecular motors, like the one powering the bacterial flagella or the ATP synthase complex, use chemical energy. So far, no artificial unidirectional rotary molecular motors operating without random Brownian motion have been created using this type of energy.

Feringa has co-led a team from the Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery at Sun Yat-Sen University, Guangzhou (China) to create just such a motor. The team’s aim was to produce a molecule that would operate autonomously and provide unidirectional rotary movement. The result is called Motor-3, a molecular motor which has two parts: a stator and a rotor, with two chiral centres on the latter. These are molecular configurations that can occur in two mirror-image versions, like a left and a right hand. Chirality is one of the keys in producing unidirectional movement.

Prof. dr. Ben Feringa | Photo University of Groningen

The two parts of the motor molecule are connected by an axis that is formed by a carbon-carbon bond. Energy for the rotation is provided by a carbodiimide. Motor-3 can harvest the energy by converting this carbodiimide to urea. It can use up to 98 percent of this fuel at the early stage of the first step, while rotation is 99 percent unidirectional. The rotation speed is as yet far from that of light-driven molecular motors (which operate on a nanosecond scale), but the team is confident that by improving the design, future versions of Motor-3 will achieve similar speeds.

Motor-3 can run in two modes: synchronized motion with pulses of chemical fuel and acid-base oscillations and autonomous motion under slightly basic conditions. A motor running on chemical fuel would allow different applications, in analogy with the molecular motors that power living organisms.

Reference: Ke Mo, Yu Zhang, Zheng Dong, Yuhang Yang, Xiaoqiang Ma, Ben L. Feringa & Depeng Zhao: Intrinsically unidirectional chemically fuelled rotary molecular motors. Nature, 6 July 2022

The team from Sun Yat Sen University, left to right: Yuhang Yang, Ke Mo, Depeng Zhao, Yu Zhang, Zheng Dong and Xiaoqiang Ma.
The team from Sun Yat Sen University, left to right: Yuhang Yang, Ke Mo, Depeng Zhao, Yu Zhang, Zheng Dong and Xiaoqiang Ma.
Last modified:18 July 2022 5.23 p.m.
View this page in: Nederlands

More news

  • 16 April 2024

    UG signs Barcelona Declaration on Open Research Information

    In a significant stride toward advancing responsible research assessment and open science, the University of Groningen has officially signed the Barcelona Declaration on Open Research Information.

  • 02 April 2024

    Flying on wood dust

    Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...

  • 18 March 2024

    VentureLab North helps researchers to develop succesful startups

    It has happened to many researchers. While working, you suddenly ask yourself: would this not be incredibly useful for people outside of my own research discipline? There are many ways to share the results of your research. For example, think of a...