Building artificial muscles from nano- to macroscale
A major challenge in the design of robots is to make them move. Motors can quickly become too large and too heavy – human muscles do the job much better. That’s why Raffaella Carloni wants to build artificial muscles that are inspired by nature, made from nanofibers that, once bundled together, form artificial myofibrils and fascicles. Carloni’s idea has become a European research project and has its kick-off meeting on 15 October at the University of Groningen.
‘Skeletal muscles are the most energy efficient actuators available. They have a high force-to-weight ratio and high flexibility, they react fast and can tune their stiffness,’ Carloni says. ‘But the motors that are currently used in prostheses, and in robots in general, are not like this.’ That is why she now wants to design artificial muscles inspired by nature. The European Union Horizon2020 Framework Program has awarded € 3 million to Carloni’s 4-year research project, MAGNIFY .
‘What we plan to do is to develop an artificial muscle from the nano scale up to the macro scale. We will use molecular motors to build nanofibres and combine these fibres into bundles that will contract when they are stimulated with an electric field,’ explains Carloni. This concept is inspired by human skeletal muscles.
Carloni is a roboticist and believes in the importance of interdisciplinary research in the development of a new generation of artificial muscle. MAGNIFY is a collaborative project between chemists and supramolecular chemists at the Italian National Research Council (Consiglio Nazionale delle Ricerche) and the French National Research Council (Centre National de la Recherche Scientifique), nanotechnologists and material scientists at the University of Bologna, and roboticists at the University of Groningen. The project will formally start with a kick-off meeting at the University of Groningen on 15 October. Carloni also coordinates another European Horizon2020 project, MyLeg, which focuses on the development of a new intuitive transfemoral leg prosthesis.
‘The new thing in the MAGNIFY project is that we plan the design of the artificial muscles from the nanoscale,’ says Carloni. ‘The artificial muscle should respond to external stimuli and we aim at reaching performances better than the current generation of motors.’ The overall plan is ambitious: in four years’ time, there should be a prototype which can be tested and validated within a robotic system.
Last modified: | 17 October 2018 10.15 a.m. |
More news
-
10 June 2024
Swarming around a skyscraper
Every two weeks, UG Makers puts the spotlight on a researcher who has created something tangible, ranging from homemade measuring equipment for academic research to small or larger products that can change our daily lives. That is how UG...
-
21 May 2024
Results of 2024 University elections
The votes have been counted and the results of the University elections are in!