Skip to ContentSkip to Navigation
About us Medical Sciences Research Pediatrics
University Medical Center Groningen

New Key Publication: Pirfenidone ameliorates pulmonary arterial pressure and neointimal remodeling in experimental pulmonary arterial hypertension by suppressing NLRP3 inflammasome activation

17 June 2022


Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased pulmonary arterial pressure, inflammation, and neo-intimal remodeling of pulmonary arterioles. Serum levels of interleukin (IL)-1β and IL-18 are elevated in PAH patients and may enhance pro-inflammatory neo-intimal remodeling. NLRP3 inflammasome activation induces cleavage of the cytokines interleukin (IL)-1β and IL-18, required for their secretion. Pirfenidone (PFD), an anti-fibrotic and anti-inflammatory drug, has been suggested to inhibit NLRP3 inflammasome activation. We hypothesized that PFD delays the progression of PAH by suppressing NLRP3 inflammasome activation. We assessed the effects of PFD treatment in a rat model for neointimal PAH induced by monocrotaline and aortocaval shunt using echocardiographic, hemodynamic, and vascular remodeling parameters. We measured inflammasome activation by NLRP3 immunostaining, Western blots for caspase-1, IL-1β, and IL-18 cleavage, and macrophage IL-1β secretion. PFD treatment ameliorated pulmonary arterial pressure (mPAP), pulmonary vascular resistance, and pulmonary vascular remodeling in PAH rats. In PAH rats, immunostaining of NLRP3 in pulmonary arterioles and caspase-1, IL-1β, and IL-18 cleavage in lung homogenates were increased compared to controls, reflecting NLRP3 inflammasome activation in vivo. PFD decreased IL-1β and IL-18 cleavage, as well as macrophage IL-1β secretion in vitro. Our studies show that PFD ameliorates pulmonary hemodynamics and vascular remodeling in experimental PAH. While PFD did not affect all NLRP3 inflammasome parameters, it decreased IL-1β and IL-18 cleavage, the products of NLRP3 inflammasome activation that are key to its downstream effects. Our findings thus suggest therapeutic benefit of PFD in PAH via suppression of NLRP3 inflammasome activation.


  • Emmanouil Mavrogiannis
  • Quint A.J. Hagdorn
  • Venetia Bazioti
  • Johannes M. Douwes
  • Diederik E. van der Feen
  • Silke U. Oberdorf-Maass
  • Marit Westerterp
  • Rolf M.F. Berger

Pulmonary Circulation:

highlight in 'Rare Disease Advisor' :

Last modified:24 June 2022 11.24 a.m.

More news

  • 04 July 2022

    Research on how tourists become Antarctic ambassadors

    Dr Annette Scheepstra of the UG Arctic Centre, part of the Faculty of Arts, is about to conduct research into tourism in Antarctica and how tourists can become Antarctic ambassadors. She has been granted €1 million in funding by the Dutch Research...

  • 12 May 2022

    KNAW appoints two UG professors as members

    The Royal Netherlands Academy of Arts and Sciences (KNAW) has appointed Professor Maria Loi and Professor Dirk Slotboom from the Faculty of Science and Engineering as members of the Academy.

  • 15 March 2022

    Vici grants for three UG researchers

    The Dutch Research Council (NWO) has awarded three Vici grants, worth €1.5 million each, to three UG researchers. Prof. J.W Romeijn, Prof. S. Hoekstra, Prof. K.I. Caputi can use this money to develop an innovative line of research and to set up...