Skip to ContentSkip to Navigation
Research Pediatrics
University Medical Center Groningen

New Key Publication: Increased insulin sensitivity and diminished pancreatic beta-cell function in DNA repair deficient Ercc1 d/- mice

22 January 2021

Background: Type 2 diabetes (T2DM) is an age-associated disease characterized by hyperglycemia due to insulin resistance and decreased beta-cell function. DNA damage accumulation has been associated with T2DM, but whether DNA damage plays a role in the pathogenesis of the disease is unclear. Here, we used mice deficient for the DNA excision-repair gene Ercc1 to study the impact of persistent endogenous DNA damage accumulation on energy metabolism, glucose homeostasis and beta-cell function.

Methods: ERCC1-XPF is an endonuclease required for multiple DNA repair pathways and reduced expression of ERCC1-XPF causes accelerated accumulation of unrepaired endogenous DNA damage and accelerated aging in humans and mice. In this study, energy metabolism, glucose metabolism, beta-cell function and insulin sensitivity were studied in Ercc1d/- mice, which model a human progeroid syndrome.

Results: Ercc1d/- mice displayed suppression of the somatotropic axis and altered energy metabolism. Insulin sensitivity was increased, whereas, plasma insulin levels were decreased in Ercc1d/- mice. Fasting induced hypoglycemia in Ercc1d/- mice, which was the result of increased glucose disposal. Ercc1d/- mice exhibit a significantly reduced beta-cell area, even compared to control mice of similar weight. Glucose-stimulated insulin secretion in vivo was decreased in Ercc1d/- mice. Islets isolated from Ercc1d/- mice showed increased DNA damage markers, decreased glucose-stimulated insulin secretion and increased susceptibility to apoptosis.

Conclusion: Spontaneous DNA damage accumulation triggers an adaptive response resulting in improved insulin sensitivity. Loss of DNA repair, however, does negatively impacts beta-cell survival and function in Ercc1d/- mice.

by:

  • Ana P Huerta Guevara
  • Sara J McGowan
  • Melissa Kazantzis
  • Tania Rozgaja Stallons
  • Tokio Sano
  • Niels L Mulder
  • Angelika Jurdzinski
  • Theo H van Dijk
  • Bart J L Eggen
  • Johan W Jonker
  • Laura J Niedernhofer
  • Janine K Kruit

Read more : doi: 10.1016/j.metabol.2021.154711. https://pubmed.ncbi.nlm.nih.gov/33493548/

Last modified:26 January 2021 09.54 a.m.
Share this Facebook LinkedIn

More news

  • 06 June 2025

    India-Netherlands Hydrogen Valley Fellowship Programme announced

    To coincide with World Environment Day, 5 June 2025, the Indian Department of Science and Technology and the University of Groningen yesterday announced a Hydrogen Valley Fellowship Programme Partnership, allowing talented Indian scholars working on...

  • 24 March 2025

    UG 28th in World's Most International Universities 2025 rankings

    The University of Groningen has been ranked 28th in the World's Most International Universities 2025 by Times Higher Education. With this, the UG leaves behind institutions such as MIT and Harvard. The 28th place marks an increase of five places: in...

  • 05 March 2025

    Women in Science

    The UG celebrates International Women’s Day with a special photo series: Women in Science.