
Identification of an alternative triglyceride biosynthesis pathway
Nature
Authors:
- Gian-Luca McLelland
- Marta Lopez-Osias
- Cristy R C Verzijl
- Brecht D Ellenbroek
- Rafaela A Oliveira
- Nicolaas J Boon
- Marleen Dekker
- Lisa G van den Hengel
- Rahmen Ali
- Hans Janssen
- Ji-Ying Song
- Paul Krimpenfort
- Tim van Zutphen
- Johan W Jonker
- Thijn R Brummelkamp
Abstract
Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.
Read more : Nature: https://www.nature.com/articles/s41586-023-06497-4
Last modified: | 11 September 2023 10.00 a.m. |
More news
-
12 September 2023
Art in times of AI
Leonardo Arriagada Beltran conducted his PhD research on the interface of computer-generated art and the constantly evolving field of Artificial Intelligence (AI). He will defend his Phd thesis on 21 September. His research offers valuable insights...
-
28 August 2023
Harish Vedantham and Casper van der Kooi nominated for 'Wetenschapstalent 2023'
Harish Vedantham and Casper van der Kooi have been nominated by New Scientist for Wetenschapstalent 2023 (Science Talent 2023). This election is meant to give young scientists and their research a stage.
-
26 July 2023
Five promising UG researchers to top institutes abroad on Rubicon grants
No less than five promising PhD graduates from the University of Groningen will be able to conduct research at top institutes abroad for two years thanks to the Rubicon programme organized by the Netherlands Organisation for Scientific Research...