A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage
Decarbonized power systems are critical to mitigate climate change, yet methods to achieve a reliable and resilient near-zero power system are still under exploration. This study develops an hourly power system simulation model considering high-resolution geological constraints for carbon-capture-utilization-and-storage to explore the optimal solution for a reliable and resilient near-zero power system. This is applied to 31 provinces in China by simulating 10,450 scenarios combining different electricity storage durations and interprovincial transmission capacities, with various shares of abated fossil power with carbon-capture-utilization-and-storage. Here, we show that allowing up to 20% abated fossil fuel power generation in the power system could reduce the national total power shortage rate by up to 9.0 percentages in 2050 compared with a zero fossil fuel system. A lowest-cost scenario with 16% abated fossil fuel power generation in the system even causes 2.5% lower investment costs in the network (or $16.8 billion), and also increases system resilience by reducing power shortage during extreme climatic events.
Last modified: | 27 February 2024 11.01 a.m. |
More news
-
04 July 2025
University of Groningen awards various prizes during Ceremony of Merits
The UG awarded different prizes to excellent researchers and students during the Ceremony of Merits on 4 July 2025.
-
02 July 2025
Relinde Weil reappointed as a member of the Supervisory Board UG
The Minister of Education has reappointed Relinde Weil for a second term as a member of the Supervisory Board of the University of Groningen.