Skip to ContentSkip to Navigation
Research ENTEG News overview

NWO Material Challenges grant for Maresca

02 December 2019

Dr Francesco Maresca who recently started a tenure track position at ENTEG, has been granted a Material Challenges project by NWO. The grant, designing hydrogen-resistant alloys through novel multi-scale modeling and experimentation, is for a M2i consortium (lead by Dr. Poulumi Dey of the TU Delft) and supported by the industrial partners Tata Steel, Allseas Engineering, Koninklijke Nedschroef Holding and Daimler. The NWO project grant is €730,000.

The project will tackle the most difficult to understand phenomenon of hydrogen embrittlement (HE) in steels. Hydrogen embrittlement is an outstanding problem in the mechanics of structural metals which results in the loss of mechanical properties, such as strength and deformability, when hydrogen is present in metals or its surrounding environment (water, acids, …). In spite of the numerous scientific efforts, the ambiguity related to fundamental mechanisms behind hydrogen embrittlement still persists. The proposed work will provide deeper insights into underlying mechanisms of hydrogen embrittlement. The project approach consists in multi-scale modelling-experimentation synergy based on Density Functional Theory, Molecular Dynamics, crystal plasticity and advanced HE experimental characterization that will connect atomistic information with microstructural behaviour of multi-phase steels in presence of hydrogen, enabling design of new steels that are resistant to hydrogen embrittlement. The novel methodology developed within the project for steels, will be transferrable to other technologically relevant materials e.g. superalloys and the novel high-entropy alloys. Strong collaborations with the world’s leading universities and research institutes such as University of Cambridge (Prof. Gábor Csányi) and Max-Planck-Institut für Eisenforschung GmbH (Prof. Dierk Raabe) will be established on the fundamental side of the project.

The Maresca group will focus on the investigation of the interplay between H and nano-/microstructural features such as dislocations and grain boundaries in important steel phases such as ferrite and martensite, by the use of Molecular Dynamics modelling based on state-of-the-art Density-Functional-Theory-accurate interatomic potentials, and continuum Crystal Plasticity modelling for microstructural analysis and design.

More information

H-resistant design
H-resistant design
Last modified:03 December 2019 11.55 a.m.

More news

  • 11 December 2023

    Join the 'Language and AI' community

    As a part of the Jantina Tammes School, the 'Language and AI' theme is an interdisciplinary initiative that aims to encourage collaboration among academics, PhD candidates, students, and industry representatives who share a keen interest in the...

  • 13 October 2023

    Moniek Tromp appointed Captain of Science of the Top Sector Chemistry

    Prof. Moniek Tromp has been appointed Captain of Science of the Chemistry Top Sector by the Minister of Economic Affairs and Climate Policy. As from 1 July 2023, she succeeded Prof. Bert Weckhuysen from Utrecht University.

  • 12 September 2023

    Art in times of AI

    Leonardo Arriagada Beltran conducted his PhD research on the interface of computer-generated art and the constantly evolving field of Artificial Intelligence (AI). He will defend his Phd thesis on 21 September. His research offers valuable insights...