Resilience and Adaptability: New pathways with Skyrmion bubbles
Researchers from the University of Groningen and TU Wien have detected signatures of the skew scattering in the ferromagnetic conductor, SrRuO3, associated with topological magnetic bubbles. This effect showed a surprising adaptability to different substrate surfaces and unique resilience to variations of temperature, strength and direction of the applied magnetic field. This research was published on July 27, 2020, as a Rapid Communication in Physical Review Research.
Magnetic bubbles are cylindrically shaped islands with reversed magnetization that can be set into motion by electric current pulses. They have been discovered about fifty years ago and were immediately employed to store digital information in non-volatile memory that can withstand harsh environments.
The recent discovery that in chiral magnets the size of magnetic bubbles can be reduced to a few nanometers, spurred the interest in them. This extremely small dimension makes the bubbles highly suitable for novel high-density magnetic memory devices. The magnetic dipoles in the nanosized bubbles, also known as skyrmions, form a knot that cannot be easily unwound. This non-trivial topology gives rise to a skew scattering of electrons off skyrmions – the so-called Topological Hall Effect.
The detection of signatures of the skew scattering in the ferromagnetic conductor, SrRuO3, advances the field of skyrmionics. It provides significant opportunities to tailor device interfaces for new magnetic memory technologies and novel hardware components for alternative computing strategies.
This research is conducted by two research groups of the UG’s Zernike Institute of Advanced Materials (ZIAM), led by Prof. Tamalika Banerjee (PhD students Ping Zhang and Arijit Das), Prof. Maxim Mostovoy (PhD students Evgenii Barts and Maria Azhar), and by researchers of the TU Wien, Austria.
Links:
Last modified: | 30 July 2020 10.23 a.m. |
More news
-
20 May 2025
Households can cut emissions by 40 percent through lifestyle change
A shift in everyday habits by the world’s wealthiest households could cut the overall household-related global carbon emissions by 40 percent.
-
20 May 2025
From oyster mushroom to overalls
A T-shirt made from fungi — or mycelium textile, to be more exact. It would be a great step toward a more sustainable fashion industry. At least it could be if the material could be developed in such a way that it can be used for clothing and if...
-
19 May 2025
Science for Society | Rubber recycling possible thanks to revolutionary method
The Ben Feringa Impact Award was presented to him on 13 May: Francesco Picchioni, professor of Chemical Technology (FSE). The reason for his award? An important innovation that allows rubber recycling without loss of quality. Start-up New Born...