Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Using waves to move droplets

14 June 2019

Self-cleaning surfaces and laboratories on a chip become even more efficient if we are able to control individual droplets. University of Groningen professor Patrick Onck, together with colleagues from Eindhoven University of Technology, have shown that this is possible by using a technique named mechanowetting. ‘We have come up with a way of transporting droplets by using transverse surface waves. This even works on inclined or vertical surfaces’. The research was published in Science Advances on 14 June.

Patrick Onck | Foto Sylvia Germes
Patrick Onck | Foto Sylvia Germes

The idea of mechanowetting is basically very simple: put a droplet on a transverse surface wave, and the droplet will move with the wave. ‘One of the properties of water droplets is that they always try to stay on top of a wave. If that top runs ahead, the droplet will run with it’, Onck explains. It is possible to move the droplets by using mechanical deformation to create surface waves. ‘The remarkable thing about this is that it also works on inclined or vertical surfaces: drops can even move upwards against gravity.’

A glycerol droplet travels along with the wave. Small particles in the droplet visualize the internal fluid flow. | Illustration De Jong et al., Sci. Adv. 2019;5: eaaw0914
A glycerol droplet travels along with the wave. Small particles in the droplet visualize the internal fluid flow. | Illustration De Jong et al., Sci. Adv. 2019;5: eaaw0914

Theory

Edwin de Jong, PhD candidate in Onck’s group and first author of the paper, tested the concept of mechanowetting by means of a computer model. ‘When it seemed to work in theory, our colleagues from Eindhoven University of Technology devised an experiment to test it. Our model turned out to be right: in practice, the drops moved exactly as we had imagined.’

One of the applications of mechanowetting is in lab-on-a-chip systems, complete laboratories the size of a credit card, which are used to analyze biological fluids such as blood or saliva. This allows the samples to be tested outside the lab, e.g. directly at the bedside, with a much faster response rate. ‘If we are able to direct each drop separately, it is possible to perform a lot of different tests at high speed with a very small volume of fluid’, says Onck. Transporting droplets separately was already possible by means of electrowetting. ‘Electrowetting is able to transport droplets by applying electric fields. However, these fields can change the biochemical properties of the sample, and that is something you don't want when doing blood tests.’

Demonstration of an active, self-cleaning surface. The droplets pick up the dirt particles as they travel along with the surface wave.| Illustration De Jong et al., Sci. Adv. 2019;5: eaaw0914
Demonstration of an active, self-cleaning surface. The droplets pick up the dirt particles as they travel along with the surface wave.| Illustration De Jong et al., Sci. Adv. 2019;5: eaaw0914

Light

In the meantime, Onck’s group is exploring new possibilities. ‘We have performed computer simulations that show that mechanowetting also works by using light-responsive materials to create waves. Light is especially interesting because of its precision and its ability to control the movement of drops remotely.’ In addition to lab-on-a-chip systems, mechanowetting has several other interesting applications, such as self-cleaning surfaces, where water droplets actively absorb and remove the dirt. It also offers opportunities for harvesting moisture from the air, by collecting dew drops for use as drinking water.

Reference: De Jong, E., Wang, Y., Toonder, J. M. J. den, Onck, P. R. (2019). Climbing droplets driven by mechanowetting on transverse waves. Science Advances 14 June 2019.

Text: Christine Dirkse

Last modified:17 June 2019 2.10 p.m.
printView this page in: Nederlands

More news

  • 23 September 2019

    Standup Economics: UG experts and comedians take to the stage | 6 October

    On Sunday 6 October, Het Financieele Dagblad and Comedy Central, in collaboration with Het Akkoord van Groningen, will present the first edition of Standup Economics – the festival where economy and comedy come together. On various stages across the...

  • 20 September 2019

    Start of MOSAiC – the Greatest Arctic Research Expedition of All Time

    After a decade of preparations, it’s finally time: on the evening of 20 September the German icebreaker Polarstern departs from the Norwegian port of Tromsø. Escorted by the Russian icebreaker Akademik Fedorov, she will set sail for the Central Arctic...

  • 20 September 2019

    Imagining Science

    Noorderlicht and the University of Groningen (RUG) continue their collaboration in the ‘Imagining Science’ series. Each year they commission a photographer to depict a scientific research field in relation to the Noorderlicht festival-theme of the year...