March 22, 2017 Christina Göpfert
Title:
Feature Relevance Analysis using Relevance Intervals
Abstract:
In classification tasks, the relevance of each feature for the
classification strongly impacts performance and plays an important role
in gaining insight into the underlying processes. Applications such as
gene expression analysis in the biomedical domain, or error pattern
recognition in motion tracking, generate data with high-dimensional and
strongly correlated features, many of which are likely to be redundant,
but not irrelevant on their own. In my talk, I present a relevance
taxonomy and the concept of feature relevance intervals, which can be
used to structure features according to said taxonomy. For the case of
linear classification, I introduce and illustrate a method for computing
relevance intervals based on linear problems.
Last modified: | 10 February 2021 1.31 p.m. |
More news
-
04 July 2025
University of Groningen awards different prizes during Ceremony of Merits
The UG awarded different prizes to excellent researchers and students during the Ceremony of Merits on 4 July 2025.
-
02 July 2025
Relinde Weil reappointed as a member of the Supervisory Board UG
The Minister of Education has reappointed Relinde Weil for a second term as a member of the Supervisory Board of the University of Groningen.