Skip to ContentSkip to Navigation
Over onsNieuws en agendaNieuwsberichten

Gronings grafeenlab verbetert eigen wereldrecord

16 december 2015

Pep Ingla-Aynés, promovendus in de onderzoeksgroep van hoogleraar Natuurkunde van Nanodevices Bart van Wees, heeft in grafeen de langste spin-relaxatieafstand ooit weten te bereiken. Met 24 micrometer is het oude record, dat ook uit het lab van Van Wees kwam, verdubbeld.

Pep Ingla-Aynés | Foto Science LinX
Pep Ingla-Aynés | Foto Science LinX

En nee, het gaat hier niet om een of ander obscuur onderdeel uit het Guiness Book of World Records. Het is harde wetenschap, bedoeld om een nieuwe vorm van elektronica te ontwikkelen, spintronics geheten. Deze technologie maakt gebruik van een kwantumeigenschap van elektronen. Behalve een negatieve lading hebben die namelijk ook een ‘spin’, die je kunt zien (maar het is kwantum, dus feitelijk is het natuurlijk heel anders) als de draairichting van het elektron. Elektronenspin kan twee waarden hebben: op of neer.

Spin is te gebruiken om informatie op te slaan of te transporteren, net als lading. ‘Tijdens spintransport ontstaat er veel minder warmte. Spintronica verbruikt daardoor minder energie’, legt Ingla-Aynés uit. Spintronica heeft nog meer voordelen, maar er zijn ook problemen die nog opgelost moeten worden voordat met deze technologie logische circuits zijn te bouwen.

‘De spin vervalt door wisselwerking tussen elektronen en atomen’, vertelt Ingla-Aynés. Dit beperkt de lengte waarover spin is te transporteren. In lichte atomen is er minder wisselwerking, dus koolstof is een goed materiaal voor spintronica. Bovendien is grafeen, een tweedimensionale vorm van koolstof, een goede spingeleider. Daarom werken wetenschappers aan de optimalisatie van spintransport in grafeen.

De sleutel, zegt Ingla-Aynés, is zuiverheid. Onzuiverheden verstoren het spintransport. Maar er spelen meer factoren mee. ‘Het aantal laagjes grafeen is belangrijk, eerdere experimenten suggereren dat twee lagen efficiënter spin geleiden.’ Dus gingen Inga-Aynés en zijn collega’s in het lab aan de slag met dubbele grafeenlagen. ‘Eerder werk van een andere promovendus liet zien dat de snelheid van spintransport omhoog ging wanneer je grafeen op een laagje boor-nitride legt.’ Hierdoor kan de spin een grotere afstand afleggen, maar de relaxatietijd (de snelheid waarmee de spin verdwijnt) was nog gelijk.

Illustratie van het experiment, boven- en zijaanzicht. Boor-nitride (hBN) met daarop een dubbellaag grafeen (BLG) en koperen contacten. | Illustratie Pep Ingla-Aynés
Illustratie van het experiment, boven- en zijaanzicht. Boor-nitride (hBN) met daarop een dubbellaag grafeen (BLG) en koperen contacten. | Illustratie Pep Ingla-Aynés

In het nieuwe experiment is een dubbele laag grafeen gesandwiched tussen twee laagjes boor-nitride. En nu ging het spintransport nog steeds sneller, maar daar bovenop was de relaxatietijd ook verlengd. Het resultaat: de spin kon een veel langere afstand afleggen, 24 micrometer. Dit was een verdubbeling van het oude record dat op 12 micrometer stond. Dit zijn de afstanden bij 4 graden Kelvin. Bij kamertemperatuur was de afgelegde afstand met 13 micrometer nog steeds zeer indrukwekkend.

Het oude record kwam eveneens uit het lab van Van Wees, en Ingla-Aynés was co-auteur van het artikel waarin dit, ongeveer een jaar geleden, werd beschreven. Destijds was er een spannende strijd met een ander lab, dat uiteindelijk tot 10 micrometer kwam. Ingla-Aynés is de eerste auteur van het artikel waarin de verplettering van het oude record is beschreven, en dat onlangs verscheen in het tijdschrift Physics Review Letters B. Wat is het geheim van dit succes? ‘We hebben in ons lab een unieke manier om laagjes grafeen en ander materiaal te stapelen, die heel weinig onzuiverheden veroorzaakt. En dat betekent beter spintransport. Bovendien ben ik getraind door Marcos Guimares, de eerste auteur van het artikel waarin het vorige record is gepubliceerd. Hij is ook de tweede auteur van ‘mijn’ artikel.’

Inmiddels werkt Ingla-Aynés aan een andere aanpak van het onderwerp. ‘We proberen nu het spintransport te sturen met een elektrisch veld. Het transport dat we tot nu toe bestudeerden was diffusie, beweging zonder echte richting. Onze volgende opdracht is de spin een specifieke richting op te sturen.’

Tekst: Science LinX

Referentie:

J. Ingla-Aynés1, M. H. D. Guimaraes1,2, R. J. Meijerink1, P. J. Zomer1, and B. J. van Wees1: 24-μm spin relaxation length in boron nitride encapsulated bilayer graphene, Physical Review B, DOI 10.1103/PhysRevB.92.201410

1Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands

2Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, USA

Laatst gewijzigd:08 januari 2016 12:41
printOok beschikbaar in het: English

Meer nieuws

  • 12 december 2017

    Weidevogel en boer zijn gebaat bij ruige stalmest

    In agrarische graslanden spelen rode wormen een sleutelrol in de bodemvruchtbaarheid en in de voedselvoorziening van weidevogels. RUG-onderzoeker Jeroen Onrust onderzocht de wisselwerking tussen boeren, wormen en weidevogels. Hij concludeert dat de...

  • 06 december 2017

    Ribosomen bepalen lading van eiwitten

    Tijdens onderzoek naar de relatie tussen de ‘drukte’ in een cel, de ionsterkte en eiwitdiffusie ontdekten biochemici van de RUG iets bijzonders: positief geladen eiwitten blijven plakken aan de ribosomen. Dit verklaart waarom de meeste in water oplosbare...

  • 04 december 2017

    Controle over de spin-richting in een ‘sandwich’ van tweedimensionaal materiaal

    RUG-onderzoekers laten zien dat manipulatie van elektronenspin in grafeen mogelijk is met behulp van molybdeen diselenide. Hun resultaten zijn verschenen in het tijdschrift Nano Letters.