Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Efficient strategies for the one-step modification of aminoglycoside antibiotics

14 September 2012

PhD ceremony: Mr. A.A. Bastian, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen

Dissertation: Efficient strategies for the one-step modification of aminoglycoside antibiotics

Promotor(s): prof. A. Herrmann

Faculty: Mathematics and Natural Sciences

Emerging trends in drug discovery are prompting a renewed interest in natural products as source of chemical diversity and lead structures. However, owing structural complexity of many natural compounds the synthesis of derivatives is not easily realized. Therefore, in this thesis two strategies are presented which enable regioselective modification of compounds carrying several functionalities of similar reactivity in a single synthetic step. First, a conceptually new approach is demonstrated using supramolecular protective groups based on RNA aptamers, so called aptameric protective groups (APGs), for the modification of complex natural products. It is shown that APGs block several functionalities by non-covalent interactions in a molecule while functional groups not in contact with the APG can be transformed chemo- and regioselectively. Using this technique aminoglycoside antibiotics neomycin B and paromomycin were modified at different positions employing different APGs and chemical transformations. According to these results APGs merit consideration as a new synthetic method in organic synthesis as they can be evolved for a large variety of target molecules and their generation relies on a well-established process. The second strategy is based on a regioselective azide introduction in a particular position of neamine antibiotics without the use of protective group chemistry. Here, an azide-transfer reagent was employed for the selective modification of diverse neamine antibiotics in C3 position of the 2 deoxystreptamine ring. Since this position is one target of the bacterial resistance mechanism, this facile azide introduction will accelerate the development of new promising antibiotics overcoming antibacterial resistance.

Last modified:15 September 2017 3.41 p.m.
printView this page in: Nederlands

More news

  • 24 May 2019

    Four UG researchers win Vidi grants

    The Netherlands Organisation for Scientific Research (NWO) has awarded an EUR 800,000 Vidi grant each to 86 experienced researchers. Four of these conduct their research at just one faculty at the University of Groningen (UG): the Faculty of Science...

  • 24 May 2019

    First edition of Top HR Leadership Programme successfully completed

    The University of Groningen Business School (UGBS) and the In the LEAD centre of expertise at the University of Groningen are looking back on a successful first edition of the Top HR Leadership programme. On 21 May, eight top HR professionals with different...

  • 22 May 2019

    The North of the Netherlands goes down under during Solar Challenge

    Students of Hanze University of Applied Sciences (UAS), University of Groningen and Noorderpoort will be competing in the Bridgestone World Solar Challenge in Australia for the first time, with their own uniquely built and designed solar car called...