Fetal and neonatal environment: effects on bile acid and lipid metabolism
PhD ceremony: Ms. H. van Meer, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Fetal and neonatal environment: effects on bile acid and lipid metabolism
Promotor(s): prof. H.J. Verkade
Faculty: Medical Sciences
Epidemiological data associate adult disease to factors in the fetal- and early postnatal environment. Maternal gestational under-nutrition affects the offspring’s adult lipid metabolism. This association between fetal environment and adult disease is called “metabolic programming”. Knowledge about the pathophysiological mechanisms of metabolic programming can be relevant to improve long-term health through early preventive nutritional manipulations.
Using stable-isotope-techniques we studied the consequences of, and mechanisms underlying dietary- and pharmacological interventions during prenatal life on the lipid metabolism. In mice, fetal under-nutrition did not affect maternal-fetal cholesterol transport or the biosynthesis of cholesterol or fatty-acids in the last stage of gestation. In human infants, intrauterine-growth-restriction did not substantially affect the synthesis rates of lipids. The Liver-X-Receptor (LXR), an important regulator of lipid metabolism, is active in the fetal liver and can be stimulated pharmacologically by administration of an agonist in the diet of pregnant mice. Pharmacological LXR activation affected lipid metabolism in the fetal offspring in mice, without substantially affecting the lipid metabolism in the offspring in adulthood.
Overall, we showed that our stable-isotope-methodology allows the determination of effects of the maternal environment on the lipid metabolism in the murine fetus and in small infants. Our results indicate that fetal malnutrition does not lead to profound adaptations in the fetal lipid metabolism. Adaptations in fetal lipid metabolism, initiated by pharmacological LXR activation, do not sustain into adulthood. These findings do not support the hypothesis that effects of the fetal environment on adult lipid metabolism are mediated by adaptations in the fetal lipid metabolism.
Last modified: | 13 March 2020 12.59 a.m. |
More news
-
08 May 2025
KNAW appoints three professors of UG/UMCG as new members
Professors Jingyuan Fu, Lisa Herzog, and Helga de Valk of the UG have been appointed members by the Royal Netherlands Academy of Arts and Sciences (KNAW).
-
06 May 2025
Science for Society | Exercise-based learning improves children’s skills
Teaching primary school children language and maths through exercise improves their attention and task orientation. Jumping and jogging for half an hour, three times a week, while absorbing the teaching material, improves test results.
-
14 April 2025
12 Marie Sklodowska Curie Doctoral Networks for the University of Groningen
The University of Groningen has achieved very good results in the last round of Marie Sklodowska Curie Doctoral Networks.