Optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells
PhD ceremony: Mr. J.D. Kotlarski, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Dissertation: Optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells
Promotor(s): prof. P.W.M. Blom
Faculty: Mathematics and Natural Sciences
Because the worldwide demand for usable energy increases yearly, feasible and renewable sources that meet this demand need to be employed. One candidate is the field of photovoltaics, where light absorbed in a semi-conductive material is directly converted to electric current. A relatively new subfield utilizes specially prepared plastic layers in so called organic solar cells to harvest sunlight. Typical organic solar cells have two materials employed in the conversion of photons into extractable charge carriers, often a polymer absorbing photons that are converted into excitons and a fullerene extracting electrons from the polymer’s excitons. In most cases both materials are intermixed as a bulk heterojunction to obtain a larger interfacial area between the materials and have shorter exciton travel distance to that interfacial area. A combined optical and electrical model can be used in order to simulate the electric behavior of organic solar cells containing polymer:fullerene BHJ active layers and their efficiency. In this thesis the principles of optical and electrical modeling are reviewed, the influence of the exciton generation profile on the performance of solar cells with imbalanced charge transport is shown, the importance of balancing charge transport for small band gap solar cells is demonstrated, the influence of the active layer charge transport on structure choice for single and tandem cells is shownand the optimization of single and tandem cells is investigated by varying polymer band gaps and active layer thicknesses.
Last modified: | 13 March 2020 01.02 a.m. |
More news
-
29 August 2025
Top Dutch Solar Racing stranded just before the finish line, but returns proudly
From August 24 to 31 this year, the student team Top Dutch Solar Racing will participate in the Bridgestone World Solar Challenge. This page will keep you up to date on the latest developments during and around the race.
-
21 August 2025
Upconversion nanoparticles to aid the application of molecular motors
Scientists from Groningen University and the University of Amsterdam have developed upconversion nanoparticles to assist in powering molecular motors.
-
19 August 2025
Bruno Ehrler appointed new director of AMOLF
Honorary professor Bruno Ehrler of the University of Groningen has been appointed as the new director of AMOLF, the NWO Institute for research into functional complex matter.