Skip to ContentSkip to Navigation
About us Latest news News News articles

Magnetic currents in graphene now simple to detect

20 February 2012

Researchers from the University of Groningen and the Foundation for Fundamental Research on Matter (FOM) have developed a technique to simply measure the magnetic moment of electrons (the spin) using non-magnetic contacts. They demonstrated the technique in graphene, a layer of carbon one atom thick. The use of non-magnetic contacts could yield simpler designs for nano-devices that use spin current. Such equipment is currently used in hard discs to make these faster and more efficient. The researchers published their results on 12 February 2012 online in the renowned journal Nature Physics.

Graphene is a two-dimensional material with superb characteristics for the transport of charge and spin, the two fundamental properties of an electron. Graphene is not magnetic and therefore magnetic information must first of all be 'added' before spin transport can be studied in it. The researchers did this by transmitting electric current through magnetic contacts, which set the spin of all the electrons in the graphene in the same direction. As the electrons move, this results in a spin current, which can only be used in devices if it is detected. Previously this could only be done using other magnetic contacts further up in the circuit. Now simpler non-magnetic contacts can also be used for this.

Translating information

The detection technology is based on a new physical mechanism that converts spin current back into voltage again in the graphene, which can be measured directly using non-magnetic contacts. This translation step is similar to the conversion of heat into an electric current, as happens in thermoelectric generators that use waste heat to drive electronic circuits. Both processes make use of the energy-dependent conduction of electrons. This means that the energy of the electrons determines how easily these move, and so how well the material (in this case graphene) conducts. The energy of the electrons is in turn dependent on their magnetic properties or – in the case of thermoelectric generators – the heat of the material.


The results are important for the development of spintronics (spin electronics) a new research area that studies the role of the magnetic moment of electrons in electronic equipment. Equipment based on these magnetic characteristics is potentially faster and more efficient.

Further information

For further information you can visit or contact one of the researchers:
Bart van Wees
Ivan Vera Marun

'Nonlinear detection of spin currents in graphene with non-magnetic electrodes', I. J. Vera-Marun, V. Ranjan and B. J. van Wees, Nature Physics (2012) DOI: 10.1038/NPHYS2219

Last modified:04 December 2023 1.22 p.m.
View this page in: Nederlands

More news

  • 13 May 2024

    ‘The colourful cells of petals never get boring!’

    Most people will enjoy colours in nature. However, the interest of evolutionary biologist Casper van der Kooi goes much further: he studies how flowers, birds, butterflies, and beetles get their colours. He also studies how these colours are used...

  • 13 May 2024

    Trapping molecules

    In his laboratory, physicist Steven Hoekstra is building an experimental set-up made of two parts: one that produces barium fluoride molecules, and a second part that traps the molecules and brings them to an almost complete standstill so they can...

  • 07 May 2024

    Lecture with soon to be Honorary Doctor Gerrit Hiemstra on May 24

    In celebration of his honorary doctorate, FSE has invited Hiemstra to give a lecture entitled ‘Science, let's talk about it’ on the morning of 24 May