Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Magnetic currents in graphene now simple to detect

20 February 2012

Researchers from the University of Groningen and the Foundation for Fundamental Research on Matter (FOM) have developed a technique to simply measure the magnetic moment of electrons (the spin) using non-magnetic contacts. They demonstrated the technique in graphene, a layer of carbon one atom thick. The use of non-magnetic contacts could yield simpler designs for nano-devices that use spin current. Such equipment is currently used in hard discs to make these faster and more efficient. The researchers published their results on 12 February 2012 online in the renowned journal Nature Physics.

Graphene is a two-dimensional material with superb characteristics for the transport of charge and spin, the two fundamental properties of an electron. Graphene is not magnetic and therefore magnetic information must first of all be 'added' before spin transport can be studied in it. The researchers did this by transmitting electric current through magnetic contacts, which set the spin of all the electrons in the graphene in the same direction. As the electrons move, this results in a spin current, which can only be used in devices if it is detected. Previously this could only be done using other magnetic contacts further up in the circuit. Now simpler non-magnetic contacts can also be used for this.

Translating information

The detection technology is based on a new physical mechanism that converts spin current back into voltage again in the graphene, which can be measured directly using non-magnetic contacts. This translation step is similar to the conversion of heat into an electric current, as happens in thermoelectric generators that use waste heat to drive electronic circuits. Both processes make use of the energy-dependent conduction of electrons. This means that the energy of the electrons determines how easily these move, and so how well the material (in this case graphene) conducts. The energy of the electrons is in turn dependent on their magnetic properties or – in the case of thermoelectric generators – the heat of the material.

Spintronics

The results are important for the development of spintronics (spin electronics) a new research area that studies the role of the magnetic moment of electrons in electronic equipment. Equipment based on these magnetic characteristics is potentially faster and more efficient.

Further information

For further information you can visit www.nanodevices.nl or contact one of the researchers:
Bart van Wees
Ivan Vera Marun

Reference
'Nonlinear detection of spin currents in graphene with non-magnetic electrodes', I. J. Vera-Marun, V. Ranjan and B. J. van Wees, Nature Physics (2012) DOI: 10.1038/NPHYS2219

Last modified:10 January 2018 2.49 p.m.
printView this page in: Nederlands

More news

  • 16 July 2019

    Thirteen Veni grants for young Groningen researchers

    Thirteen researchers from the University of Groningen (UG) and the UMCG have been awarded Veni grants within the framework of NWO’s Innovational Research Incentives Scheme. A terrific result building on last year's successes, where 12 Groningen researchers...

  • 11 July 2019

    UG to build new observatory in dark Lauwersmeer Region

    The Kapteyn Astronomical Institute of the University of Groningen is working on a concrete plan for a new observatory in the Dark Sky Park Lauwersmeer. The observatory will be placed at the Lauwersnest Activity Centre of Staatsbosbeheer in Lauwersoog...

  • 11 July 2019

    Major companies’ annual reports too vague about climate impact

    Many major Dutch companies publish extensive information about climate impact in their annual reports. However, very few companies provide concrete, detailed information about their own CO2 emissions, the impact of climate change on their business...