Structural and functional features of GltS of Escherichia coli and CitS of Klebsiella pneumoniae
PhD ceremony: Mr. T. Krupnik, 11.00 uur, Aula Academiegebouw, Broerstraat 5, Groningen
Dissertation: Structural and functional features of GltS of Escherichia coli and CitS of Klebsiella pneumoniae
Promotor(s): prof. A.J.M. Driessen
Faculty: Mathematics and Natural Sciences
The research of Tomasz Krupnik have shown structural similarities between evolutionary distant membrane proteins. His work can be potentially used in molecular modelling and new drug development.
Sustainability of life depends on the ability of living organisms to respond to external stimuli. This function is facilitated by transmembrane proteins, capable of transducing information about the environment and transporting solutes from the environment through the membrane to the inside of the cell. The glutamate symporter GltS of Escherichia coli and the citrate symporter CitS of Klebsiella pneumonia are examples of transport proteins. These two proteins share little or no sequence similarity, yet the hydropathy profiles of the sequences are remarkably similar. For that reason they are thought to have the same general fold of the polypeptide chain and mechanism of transport. In both of them it is possible to distinguish two domains consisting of five transmembrane elements, a reentrant or pore loop and a long cytoplasmic loop. Moreover, both are dimers. The dimeric quaternary structure most likely forms a basin at the interface of the monomers, a feature observable by electron microscopy analysis of CitS. Crosslinking experiments performed on purifies sample of GltS and CitS with the unspecific crosslinker glutaraldehyde revealed only CitS as dimer.
Crosslinking of GltS was observed only after fusing an additional protein mass to the transporter. Similar fusion experiments allowed the conclusion that the large cytoplasmic loops are placed along the long axis, away from the dimer interface.
By studying the accessibility of two introduced cysteine residues it was demonstrated that changes in the large cytoplasmic loop are transduced to the active center, opening up the possibility of regulation of activity through the loop.
Last modified: | 13 March 2020 12.59 a.m. |
More news
-
24 March 2025
UG 28th in World's Most International Universities 2025 rankings
The University of Groningen has been ranked 28th in the World's Most International Universities 2025 by Times Higher Education. With this, the UG leaves behind institutions such as MIT and Harvard. The 28th place marks an increase of five places: in...
-
24 March 2025
A clearer look at the birth of the universe
Scientists from Faculty of Science and Engineering, University of Groningen, will use the Simons Observatory's new telescope to search for new physics.
-
21 March 2025
Step closer to the commercialization of the child-friendly button cell battery
Fused Button Battery Holding BV has signed a license agreement with the University of Groningen (UG), the University Medical Center Groningen (UMCG), and Delft University of Technology (TU Delft). The agreement marks a crucial step in the...