Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Characterization and role of UTF1 in embryonic stem and carcinoma cells. Implications for regulation of gene expression, chromatin structure and differentiation

08 July 2011

PhD ceremony: Mr. R.P. Thummer, 11.00 uur, Doopsgezinde kerk, Oude Boteringestraat 33, Groningen

Dissertation: Characterization and role of UTF1 in embryonic stem and carcinoma cells. Implications for regulation of gene expression, chromatin structure and differentiation

Promotor(s): prof. P.J.M. van Haastert

Faculty: Mathematics and Natural Sciences

 

In his thesis Rajkumar Thummer has investigated the role of Undifferentiated embryonic cell Transcription Factor 1 (UTF1) in regulating specific embryonic stem (ES) and carcinoma (EC) cell properties. ES and EC cells can differentiate into (almost for EC) all cell types present in the adult organism, i.e. pluripotency. In addition, ES cells are able to proliferate indefinitely through a process called self-renewal (after division, both daughter cells are equal to the mother cell). ES cells can be derived from the inner cell mass of blastocyst embryos, a developmental stage reached 3-4 days after fertilization in mice. EC cells have been isolated from different germ cell tumors.

The UTF1 gene is highly expressed in ES and EC cells and is required for proper differentiation of these cells. Here Thummer shows that the human UTF1 protein represses gene expression and has biochemical properties very similar to core histones; essential structural chromatin proteins. In the human population, sequence variants of the UTF1 gene are present and one of these variant UTF1 genes encodes a protein with decreased histone-like properties.

When ES or EC cells are generated with elevated UTF1 levels, their ability to properly differentiate is affected, a finding of Thummer also observed in ES and EC cells with reduced UTF1 levels. Summarizing, Thummers data show that UTF1 is a key chromatin component in ES and EC cells. His data propose that UTF1 is important for a chromatin organization that prevents aberrant gene expression and required for proper initiation of lineage-specific differentiation of ES and EC cells.

 

Last modified:15 September 2017 3.41 p.m.

More news

  • 23 April 2019

    From paperclip to patent

    How is it possible that an albatross doesn’t crash and die when it lands? And how come its large wings don’t break due to air resistance? That is what you would expect, according to the laws of aerodynamics. However, Professor Eize Stamhuis has discovered...

  • 17 April 2019

    Why lightning often strikes twice

    In contrast to popular belief, lightning often does strike twice, but the reason why a lightning channel is ‘reused’ has remained a mystery. Now, an international research team led by the University of Groningen has used the LOFAR radio telescope to...

  • 16 April 2019

    Still going strong after four decades

    On March 29th professor of Applied Physics Jeff de Hosson was offered a farewell symposium, a few months after his official retirement date near the close of 2018. ‘But 29 March was the 100th birthday of Jan Francken, my predecessor.’ Besides, De Hosson...