Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Molecular Conductance. Synthesis, self-assembly, and electrical characterization of II-conjugated wires and switches

01 July 2011

PhD ceremony: Ms. E.H. Valkenier-van Dijk, 16.15 uur, Doopsgezinde Kerk, Oude Boteringestraat 33, Groningen

Dissertation: Molecular Conductance. Synthesis, self-assembly, and electrical characterization of II-conjugated wires and switches

Promotor(s): prof. J.C. Hummelen

Faculty: Mathematics and Natural Sciences

 

The thesis of Hennie Valkenier-Van Dijk describes how the molecular structure determines the electrical conductance of rigid π -conjugated molecules: molecular wires. To connect the molecules to gold electrodes, Self-Assembled Monoalayers (SAMs) were formed. Valkenier-Van Dijk investigated the formation of SAMs from (bis) acetyl protected π -conjugated dithiols and optimized the procedures for the formation of high-quality densely-packed SAMs.

Valkenier-Van Dijk developed a library of molecular wires, synthesized by a general scheme, and studied molecular conductance by the ‘Matrix Approach’. In that, she studied trends in the molecular conductance of several series of molecular wires in five different junction geometries. All these experiments were performed in collaborations with different research groups.

Valkenier-Van Dijk found that the length of the molecules has a major influence on the conductance of oligo(phenylene ethynylene)-based molecular wires. Wires with a smaller HOMO-LUMO gap (or higher HOMO level) showed a higher conductance, although the length of the wire has a dominant role on the charge transport. Furthermore Valkenier-Van Dijk found that the π -conjugation pattern plays an important role in molecular conductance. Linear conjugated wires are about two orders of magnitude more conductive than cross-conjugated wires. The low conductance of cross-conjugated molecular wires (even in comparison with broken conjugated wires) can be explained by destructive quantum interference. Valkenier-Van Dijk showed that anthraquinone-based wires can be switched between a cross-conjugated and a linear conjugated state, which opens the way for redox-based conductance switching.

 

Last modified:15 September 2017 3.40 p.m.

More news

  • 23 April 2019

    From paperclip to patent

    How is it possible that an albatross doesn’t crash and die when it lands? And how come its large wings don’t break due to air resistance? That is what you would expect, according to the laws of aerodynamics. However, Professor Eize Stamhuis has discovered...

  • 17 April 2019

    Why lightning often strikes twice

    In contrast to popular belief, lightning often does strike twice, but the reason why a lightning channel is ‘reused’ has remained a mystery. Now, an international research team led by the University of Groningen has used the LOFAR radio telescope to...

  • 16 April 2019

    Still going strong after four decades

    On March 29th professor of Applied Physics Jeff de Hosson was offered a farewell symposium, a few months after his official retirement date near the close of 2018. ‘But 29 March was the 100th birthday of Jan Francken, my predecessor.’ Besides, De Hosson...