Skip to ContentSkip to Navigation
About usNews and EventsNews articles

From natural to artificial channels

24 June 2011

PhD ceremony: Mr. E. Halža, 11.00 uur, Doopsgezinde Kerk, Oude Boteringestraat 33, Groningen

Title: From natural to artificial channels

Promotor(s): prof. B.L. Feringa

Faculty: Mathematics and Natural Sciences

 

The thesis of Erik Halža is focusing on the modification of naturally occurring transport systems, pores and channels, with small organic molecules in order to control their function and properties. On the other hand completely artificial channels build out of small organic molecules are discussed by him as well.

The cell is the structural and functional unit of all known living organisms. Each cell is able of self-containing and self-maintaining: it can take in nutrients, convert these nutrients into energy, carry out specialized functions, and reproduce as necessary.

All cells are surrounded by a closed membrane that defines the cell. Even within the cell, membranes play key roles in compartmentalization of biochemical products and processes. These membranes prevent molecules generated inside the cell from leaking out and unwanted molecules from diffusing in; yet they also contain transport systems for carrying specific molecules inside and outside of the cell.

Halža has modified alamethicin, naturally occurring pore forming peptide with light switchable azobenzene molecule in order to control its function by light. The functional size of SecYEG pore has been probed by him by attaching rigid spherical molecules to Outer membrane protein A.

Also Halža has modified the mechanosensitive channel of large conductance with redox- and pH-sensitive labels in order to control its function electrochemically or by changing pH of the environment. The synthesis of artificial channel forming molecules has been described by Halža as well as electrophysiological and cryo-TEM studies. Finally, the last chapter is focusing on the synthesis and properties of iron(II) and diarylethene switch complex in order to control the magnetic properties of this complex by light.

 

Last modified:15 September 2017 3.40 p.m.
printView this page in: Nederlands

More news

  • 16 July 2019

    Thirteen Veni grants for young Groningen researchers

    Thirteen researchers from the University of Groningen (UG) and the UMCG have been awarded Veni grants within the framework of NWO’s Innovational Research Incentives Scheme. A terrific result building on last year's successes, where 12 Groningen researchers...

  • 11 July 2019

    UG to build new observatory in dark Lauwersmeer Region

    The Kapteyn Astronomical Institute of the University of Groningen is working on a concrete plan for a new observatory in the Dark Sky Park Lauwersmeer. The observatory will be placed at the Lauwersnest Activity Centre of Staatsbosbeheer in Lauwersoog...

  • 11 July 2019

    Major companies’ annual reports too vague about climate impact

    Many major Dutch companies publish extensive information about climate impact in their annual reports. However, very few companies provide concrete, detailed information about their own CO2 emissions, the impact of climate change on their business...