Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Pores of cell membrane more flexible than previously thought

27 April 2011

Researchers at the University of Groningen have succeeded in experimentally determining the maximum diameter of a pore in a cell membrane. They achieved this by directing a series of organic molecules that gradually increased in size through the pore. The diameter turned out to be significantly larger than had previously been calculated with the help of models from molecular dynamics. The research, on which biologists and chemists worked closely together, was published this week in the Early Edition of the scientific journal PNAS.

Every living cell is surrounded by a membrane that separates the content of the cell from the outside environment. However, the membrane is permeable to proteins that are secreted. The proteins are then conducted in an unfolded form through the membrane via a pore. The pore is very flexible and precisely envelopes the unfolded protein. This prevents other components of the cell leaking out during the secretion process.

In order to determine the maximum size of the pore opening, the researchers connected a series of size-gradated rigid, spherical organic molecules to a protein. As long as these were relatively small molecules, they were transported without problem through the pore together with the protein. As their size increased, however, there came a moment when the pore became blocked.

In this way it turned out to be possible to experimentally determine the maximum size of the pore. This was determined as about 2.2 nanometres (i.e. 2.2 hundred-thousandths of a millimetre). Previously, using simulation methods from molecular dynamics, the maximum diameter was estimated to be about 1.8 nanometres.

More information:

Prof. Arnold Driessen (department of Molecular Microbiology)
Prof. Ben Feringa (department of Organic Synthetic Chemistry)

Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. Francesco Bonardia, Erik Halzab, Martin Walkob, François Du Plessisa, Nico Nouwena, Ben L Feringa and Arnold J. M. Driessen

Reference: http://www.pnas.org/content/early/2011/04/19/1101705108

Last modified:15 September 2017 3.31 p.m.

More news

  • 23 April 2019

    From paperclip to patent

    How is it possible that an albatross doesn’t crash and die when it lands? And how come its large wings don’t break due to air resistance? That is what you would expect, according to the laws of aerodynamics. However, Professor Eize Stamhuis has discovered...

  • 17 April 2019

    Why lightning often strikes twice

    In contrast to popular belief, lightning often does strike twice, but the reason why a lightning channel is ‘reused’ has remained a mystery. Now, an international research team led by the University of Groningen has used the LOFAR radio telescope to...

  • 16 April 2019

    Still going strong after four decades

    On March 29th professor of Applied Physics Jeff de Hosson was offered a farewell symposium, a few months after his official retirement date near the close of 2018. ‘But 29 March was the 100th birthday of Jan Francken, my predecessor.’ Besides, De Hosson...