Microbial sterol side chain degradation in Actinobacteria
PhD ceremony: Mr. M.H. Wilbrink, 13.15 uur, Academiegebouw, Broerstraat 5, Groningen
Title: Microbial sterol side chain degradation in Actinobacteria
Promotor(s): prof. L. Dijkhuizen
Faculty: Mathematics and Natural Sciences
The investigations of Maarten Wilbrink for the first time have led to identification of genes involved in the degradation of sterol side chains.
Bacterial species belonging to the genus Rhodococcus are renown for their capability to degrade a wide variety of biomolecules, including sterols and steroids. The microbial degradation of sterols involves oxidation of the steroid nucleus and stepwise removal of the side chain via β -oxidation. The genes and enzymes involved in the latter process were hitherto unknown. Detailed information on the genetics and enzymes involved in sterol side chain degradation is of fundamental importance and industrially relevant, e.g. for the engineering of microbial strains to produce (bioactive) steroids from cheap sterol precursors.
Transcriptome analysis identified a cholesterol catabolic gene cluster in the soil bacterium Rhodococcus jostii RHA1. The gene cluster is also present in the related pathogenic bacterium Mycobacterium tuberculosis, which causes tuberculosis in humans. The cholesterol degradation genes were previously found to be important for survival of the pathogen in macrophages, but their roles had remained unclear. Wilbrinks results thus provided novel insights in the ability of M. tuberculosis to survive in macrophages, namely via degradation of cholesterol.
His thesis describes the molecular characterization of several genes (cyp125, fadD19, ltp3 and ltp4), involved in sterol side chain degradation. Their roles were determined using mutant strain RG32 of Rhodococcus rhodochrous. Strain RG32, constructed in Wilbrinks lab, is blocked in steroid nucleus degradation and accumulates steroids from sterols. His studies, combined with biochemical analysis of the encoded enzymes (in the case of CYP125, FadD19) gave detailed insight into the microbial degradation of sterols in rhodococci that extends to related (pathogenic) bacteria including M. tuberculosis.
Last modified: | 13 March 2020 01.11 a.m. |
More news
-
05 September 2025
Kottapalli nominated for the Huibregtsen Prize 2025
Prof. Ajay Kottapalli of the University of Groningen has been nominated for the prestigious Huibregtsen Prize.
-
29 August 2025
Top Dutch Solar Racing stranded just before the finish line, but returns proudly
From August 24 to 31 this year, the student team Top Dutch Solar Racing will participate in the Bridgestone World Solar Challenge. This page will keep you up to date on the latest developments during and around the race.
-
21 August 2025
Upconversion nanoparticles to aid the application of molecular motors
Scientists from Groningen University and the University of Amsterdam have developed upconversion nanoparticles to assist in powering molecular motors.