Skip to ContentSkip to Navigation
About usNews and EventsNews articles

Polymerization of hyperbranched polysaccharides by combined biocatalysis

28 January 2011

PhD ceremony: Mr. J. van der Vlist, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen

Title: Polymerization of hyperbranched polysaccharides by combined biocatalysis

Promotor(s): prof. K. Loos

Faculty: Mathematics and Natural Sciences


In this thesis it is shown that enzymes are essential laboratory tools for the in vitro synthesis of polysaccharides with control over macromolecular properties. Here we present a method to enzymatically polymerize hyperbranched polysaccharides with control over stereoregularity, degree of branching and molecular weight. Moreover, the possibility to construct hybrid materials consisting of a hyperbranched polyglucan part connected to a synthetic substrate (e.g. polymer, surface, etc) is shown.

Using an enzymatic catalyzed tandem polymerization in which the unique properties of the enzymes potato phosphorylase and glycogen branching enzyme (GBEDG; from Deinococcus geothermalis) are combined, a hyperbranched polyglucan was polymerized consisting of (1→4) linked alfa-D-glucose residues with branches at the glucose C6 hydroxy group. In this tandem polymerization, phosphorylase catalyzes the addition of (1→4) linked alfa-D-glucose residues from a short oligosaccharide, using glucose-1-phosphate (G-1-P) as donor substrate (monomer). GBEDG introduces in situ branch points at the growing polymer chain. More specifically, GBEDG catalyzes the formation of alfa(1→6) branch points by the hydrolysis of an alfa(1→4) linked glycosidic linkage and subsequent inter- or intra-chain transfer of the non reducing terminal fragment to the C6 hydroxyl position of an alfa-glucan.

A property of phosphorylase, essential for the research as outlined in this thesis, is the donor substrate (primer) dependency. Polymerization is impossible without an oligomeric alfa(1→4) linked D-glucose primer of at least 3 glucose residues. By taking advantage of this property hybrid materials were constructed by anchoring the oligomeric primer to a substrate prior to the enzymatic tandem polymerization with. This resulted in hyperbranched multi arm structures, diblock copolymers consisting of a hyperbranched polyglucan part and hyperbranched brush polymers anchored to Si wafers.



Last modified:15 September 2017 3.40 p.m.

More news

  • 17 April 2019

    Why lightning often strikes twice

    In contrast to popular belief, lightning often does strike twice, but the reason why a lightning channel is ‘reused’ has remained a mystery. Now, an international research team led by the University of Groningen has used the LOFAR radio telescope to...

  • 16 April 2019

    Still going strong after four decades

    On March 29th professor of Applied Physics Jeff de Hosson was offered a farewell symposium, a few months after his official retirement date near the close of 2018. ‘But 29 March was the 100th birthday of Jan Francken, my predecessor.’ Besides, De Hosson...

  • 11 April 2019

    Ben Feringa in orbit around the Sun

    Dozens of minor planets that used to orbit the Sun anonymously were named by the International Astronomical Union on 6 April 2019. The asteroid that used to be known as ‘minor planet 12655’ was named after Prof. Ben Feringa, winner of the 2016 Nobel...