Genetic basis of sex determination in the haplodiploid wasp Nasonia vitripennis
PhD ceremony: Ms. E.C. Verhulst, 16.15 uur, Academiegebouw, Broerstraat 5, Groningen
Title: Genetic basis of sex determination in the haplodiploid wasp Nasonia vitripennis
Promotor(s): prof. L.W. Beukeboom
Faculty: Mathematics and Natural Sciences
In the research of Eveline Verhulst the involvement of epigenetic modification in sex determination is shown for the first time. Both humans and the fruitfly Drosophila reproduce sexually, so their offspring has genes from both father and mother. The parasitic wasp Nasonia also reproduces sexually but females can produce offspring without mating. This offspring receives genes from the mother only and will develop as male. When a Nasonia female does mate, she can choose whether to fertilize her eggs or not. The fertilized eggs receive genes from father and mother, and will develop as females. In this way, mated females can regulate the amount of sons and daughters.
The most important gene in insect sex determination is transformer. When an insect embryo contains the transformer protein, a female will develop. When the transformer protein is absent, a male will develop. In Drosophila a male indirectly prevents the production of transformer protein. In Nasonia this is impossible, since males have no father! A Nasonia female puts an amount of transformer messengerRNA (mRNA) into her eggs which the embryo can use to produce transformer protein, but only when the embryo can also make transformer mRNA itself. An unfertilized embryo is unable to do this because the mother has locked the transformer gene in her eggs, resulting in male development. The father has put an accessible transformer gene in his sperm, so a fertilized egg can make transformer mRNA and develops as a female. The underlying mechanism is called ‘epigenetic modification’.
Last modified: | 13 March 2020 01.10 a.m. |
More news
-
22 April 2025
Microplastics and their effects on the human body
Professor of Respiratory Immunology Barbro Melgert has discovered how microplastics affect the lungs and can explain how to reduce our exposure.
-
15 April 2025
1.5 million funding from Province of Groningen for innovative technology in the region
The University of Groningen will receive nearly 1.5 million euros in funding from the Province of Groningen to assist entrepreneurial academic researchers in developing innovative ideas into a startup.
-
15 April 2025
Nathalie Katsonis wins Ammodo Science Award 2025
For her pioneering research on molecular systems, Nathalie Katsonis receives the Ammodo Science Award for fundamental research 2025.