Skip to ContentSkip to Navigation
Rijksuniversiteit Groningenfounded in 1614  -  top 100 university
Over ons Actueel Nieuws Nieuwsberichten

Doorbraak in onderzoek naar tandplaque

01 december 2010

De Groningse hoogleraren Bauke Dijkstra en Lubbert Dijkhuizen hebben de structuur en het werkingsmechanisme opgehelderd van het enzym dat bacteriën aan tanden en kiezen doet plakken. Nu dit bekend is, wordt het makkelijker om een stof te vinden die de activiteit van het enzym afremt. Voeg die stof toe aan tandpasta, of zelfs aan snoep, en cariës is verleden tijd. De resultaten van het onderzoek verschijnen deze week in het tijdschrift Proceedings of the National Academy of Sciences (PNAS).

De onderzoekers van de Rijksuniversiteit Groningen analyseerden het enzym glucansucrase uit de melkzuurbacterie Lactobacillus reuteri, die bij de mens voorkomt in de mondholte en het maagdarmkanaal. Bacteriën gebruiken het glucansucrase enzym om suiker uit voedsel om te zetten in lange, plakkerige suikerketens. Met dit plakmiddel hechten ze zich op tandglazuur. Ook de grootste veroorzaker van tandbederf, de bacterie Streptococcus mutans, maakt gebruik van dit enzym. Eenmaal gehecht aan het tandglazuur fermenteren deze bacteriën suikers waarbij zuren ontstaan die het calcium van tanden oplossen. Zo ontstaan gaatjes.

Ruimtelijke structuur

Met behulp van eiwitkristallografie wisten de onderzoekers de ruimtelijke (3D-) structuur van het enzym op te helderen. Hiermee zijn de Groningse wetenschappers de eersten die er in geslaagd zijn een glucansucrase te kristalliseren. Uit de kristalstructuur blijkt dat de manier waarop het eiwit zich opvouwt uniek is. De verschillende delen van het enzym worden namelijk niet gevormd uit één aansluitend stuk aminozuurketen, maar uit twee stukken die door een U-vormige structuur van de keten bij elkaar komen; een waarneming die nog niet eerder in de wetenschappelijke literatuur is beschreven.

Werkingsmechanisme

Met de ontrafeling van de 3D-structuur kregen de onderzoekers een gedetailleerd inzicht in het werkingsmechanisme van het enzym. Het enzym splitst sucrose in fructose en glucose om vervolgens het glucosemolecuul toe te voegen aan een groeiende suikerketen.Tot nu toe ging de wetenschap er vanuit dat beide processen door verschillende delen van het enzym werden uitgevoerd. Uit het model van de Groningse onderzoekers blijkt echter dat beide activiteiten in hetzelfde actieve centrum van het enzym plaatsvinden.

Remmers

Dijkhuizen verwacht dat specifieke remmers voor het glucansucrase enzym kunnen verhinderen dat bacteriën aan het tandglazuur hechten. Juist kennis over structuur en werkingsmechanisme van het enzym is voor de ontwikkeling van remmers essentieel. Tot nu toe was dergelijk onderzoek namelijk niet succesvol, stelt Dijkhuizen: 'De onderzochte remmers blokkeerden niet alleen glucansucrase, maar ook het spijsverteringsenzym amylase dat in ons speeksel zit en nodig is voor de afbraak van zetmeel.'

Evolutie

De kristalstructuur geeft ook een verklaring voor deze dubbele remming. De wetenschappers laten zien dat glucansucrases zeer waarschijnlijk zijn geëvolueerd uit zetmeelafbrekende amylase enzymen. 'We wisten al dat beide enzymen op elkaar leken', zegt Dijkhuizen, 'maar aan de hand van de kristalstructuur zien we dat de actieve centra vrijwel identiek zijn. Toekomstige remmers moeten dus op heel specifieke plaatsen gericht zijn omdat beide enzymen evolutionair zo ontzettend dicht bij elkaar staan.'

Tandpasta en snoep

Toekomstige glucansucrase-remmers ziet Dijkhuizen in eerste instantie als toevoeging in tandpasta en mondwater. 'Maar misschien zelfs ook wel in snoep', suggereert hij. 'Een remmer zou er voor kunnen zorgen dat in de mond vrijkomende suikers geen schade aanrichten'. Dat de tandenborstel zijn langste tijd heeft gehad, verwacht Dijkhuizen echter niet: 'Tandenpoetsen zal ook altijd nodig blijven'.

Artikel:

Remarkable fold of a 117 kDa glucansucrase fragment: Insights into evolution and product specificity of GH70 enzymes. Auteurs: Andreja Vujicić-Žagar, Tjaard Pijning, Slavko Kralj, Cesar A. López, Wieger Eeuwema, Lubbert Dijkhuizen en Bauke W. Dijkstra. PNAS, 30 november 2010

Het artikel is gepubliceerd op: www.pnas.org/cgi/doi/10.1073/pnas.1007531107

Noot voor de pers

Meer informatie:

  • prof. dr. Bauke W. Dijkstra, hoogleraar biofysische chemie
  • prof. dr. Lubbert Dijkhuizen, hoogleraar microbiologie
Laatst gewijzigd:15 september 2022 14:22
Deel dit Facebook LinkedIn
View this page in: English

Meer nieuws

  • 08 oktober 2025

    Niet elk plastic hoeft bio-based of afbreekbaar te zijn

    Per persoon gooien we zo’n 33 kilo plastic verpakkingsmateriaal weg per jaar. Hoogleraar polymeerchemie Katja Loos werkt aan een duurzamere toekomst voor plastics - door te kijken naar meer dan alleen het materiaal zelf.

  • 06 oktober 2025

    De genAI bubbel zal barsten, maar geef AI niet op!

    'Mensen blijven maar zeggen dat generatieve AI een universele tool is die veel meer kan,’ zegt Michael Biehl, hoogleraar Machine Learning. ‘Maar vroeg of laat zal de genAI-bubbel barsten,’ stelt hij. Maar dat betekent niet dat we alle AI maar met het...

  • 03 oktober 2025

    New Scientist Wetenschapstalent van het Jaar 2025: Aranka Ballering

    Aranka Ballering is uitgeroepen tot New Scientist Wetenschapstalent van het Jaar 2025. De jaarlijkse verkiezing wordt georganiseerd door wetenschapsmagazine New Scientist.