Puzzling structures enlightened. A structural survey of large protein complexes
PhD ceremony: Mr. J.B. Bultema, 13.15 uur, Academiegebouw, Broerstraat 5, Groningen
Thesis: Puzzling structures enlightened. A structural survey of large protein complexes
Promotor(s): prof.dr. E.J. Boekema
Faculty: Mathematics and Natural Sciences
This thesis describes the results of structural characterization of large proteins complexes by single particle electron microscopy. The main aim of this project was to determine the structures of multi-protein complexes and to localize subunit positions within these multi-protein complexes. This information provides insights to better understand protein-protein interaction within complexes. One chapter describes the structural characterization of isolated mitochondrial supercomplexes. Projection maps of such supercomplexes were analysed. Based on our assignment of individual complexes in the supercomplexes we propose a structural model for the largest supercomplex. Two chapters describe several aspects of Vipp1 from Synechocystis PCC 6803. We showed that Vipp1 forms stable dimers and higher-ordered oligomers. Vipp1 is localized in the cytoplasm as well as at the cytoplasmic and thylakoid membrane. The simultaneous existence of multiple types of rings is extraordinary and suggests a special function of Vipp1. The second chapter describes a comparison with Vipp1’s bacterial homologue Phage Shock Protein A (PspA). Both proteins have similar secondary structures and form large homooligomeric rings but their ring dimensions differ significantly. Furthermore, we suggest a spatial structural model of the observed Vipp1 rings.The last chapter describes the biochemical and biophysical characterization of a ribonucleoprotein complex called Cascade. This multi-protein complex is part of the CRISPR immune system in prokaryotes which utilizes small guide RNAs to neutralize invading viruses and plasmids. We present the composition, protein stoichiometry and low-resolution structure of Cascade and show how it recognizes double-stranded DNA targets.
Last modified: | 13 March 2020 01.16 a.m. |
More news
-
05 September 2024
ERC Starting Grants for two UG researchers
Two UG researches, both working at the Faculty of Science and Engineering, have been awarded an ERC Starting Grant: Jingxiu Xie and Gosia Wlodarczyk-Biegun. The European Research Council's (ERC) Starting Grants consist of €1.5 million each, for a...
-
23 July 2024
The chips of the future
Our computers use an unnecessarily large amount of energy, and we are reaching the limits of our current technology. That is why CogniGron is working on new materials that mimic the way the brain computes, and Professor Tamalika Banerjee will...
-
18 July 2024
Smart robots to make smaller chips
A robotic arm in a factory that repeatedly executes the same movement: that’s a thing of the past, states Ming Cao. Researchers of the University of Groningen are collaborating with high-tech companies to make production processes more autonomous.