Skip to ContentSkip to Navigation
Over ons Actueel Nieuws Nieuwsberichten

Scalable, parallel poisson polvers for CFD problems

24 februari 2012

Promotie: dhr. M. Younas, 11.00 uur, Academiegebouw, Broerstraat 5, Groningen

Proefschrift: Scalable, parallel poisson polvers for CFD problems

Promotor(s): prof.dr. A.E.P. Veldman, prof.dr. H.L. Trentelman

Faculteit: Wiskunde en Natuurwetenschappen

Rekenkracht voor turbulente stromingen

Het berekenen van niet-samendrukbare turbulente stromingen vergt veel rekencapaciteit, waarvan het grootste deel wordt gebruikt voor het oplossen van de Poisson-vergelijking voor de druk. Daarom verrichtte Muhammad Younas onderzoek naar de prestaties van ‘Poissonsolvers’, waarbij hij met name keek naar solvers die op Krylov-methoden en Algebraïsche Multi-Gridmethoden zijn gebaseerd.

In drie dimensies zijn symmetrische Poissonproblemen opgelost op rekenroosters tot en met één miljard punten. De CG-methode met ML als pre-conditionering geeft de beste resultaten. Als de randvoorwaarde de symmetrie van het Poisson-probleem verstoort, worden gepreconditioneerde GMRES-methoden gebruikt.

Niet-symmetrische Poisson-problemen treden op na discretisatie van de Navier-Stokes vergelijkingen (behoud van massa en impuls) in de buurt van een vrij oppervlak. Younas beschouwde drie gevallen: een niet-samendrukbare een-fasestroming, een samendrukbare twee-fasenstroming en een vrije oppervlaktestroming met in- en uitstroomrandvoorwaarden. Ook in deze gevallen geeft een AMG pre-conditionering goede resultaten.

Verder zijn directe numerieke simulaties van turbulente kanaalstromingen onderzocht voor Reynoldsgetallen tot en met een Re van ongeveer 1400. Daarvoor zijn 1024 processoren gebruikt. De Poissonsolver voor de druk maakt deel uit van PETSc, en de Message Passing Interface (MPI) standaard is toegepast om de overige delen van het computerprogramma om te zetten in een parallelle Fortrancode. De Poissonsolver vergt ongeveer 90 procent van de rekentijd. De berekeningen zijn uitgevoerd op Huygens Nationale Supercomputer in Amsterdam. In deze toepassing blijkt de ML pre-conditionering iets efficiënter te zijn dan BoomerAMG.

Muhammad Younas (Pakistan, 1973) studeerde toegepaste wiskunde aan de University of Engineering and Technology in Lahore. Het onderzoek werd uitgevoerd bij het Bernoulli Institute for Mathematics and Computer Science van de RUG en gefinancierd door de Higher Education Commission (Pakistan) en NWO.

Laatst gewijzigd:13 maart 2020 01:02
Deel dit Facebook LinkedIn
View this page in: English

Meer nieuws

  • 01 juli 2025

    Zomernummer Broerstraat 5

    Het zomernummer van RUG-magazine Broerstraat 5 is uit.

  • 01 juli 2025

    ‘Geef zeehonden de ruimte’

    De Waddenzee verandert voortdurend. De lokale dieren hebben adaptaties nodig om te overleven in een omgeving die is vormgegeven door de getijden. Door de zeehonden in het gebied te onderzoeken zijn PhD-onderzoekers Margarita Méndez-Aróstegui en...

  • 01 juli 2025

    Khalaf Alkhalaf Alumnus van het Jaar 2025

    Khalaf Alkhalaf is verkozen tot Alumnus van het Jaar 2025 van de RUG. Hij krijgt de prijs voor zijn inzet voor een goede opvang en begeleiding van vluchtelingen in Nederland en de inspirerende manier waarop hij zijn ervaringen en kennis deelt met...